今天我们来聊聊端到端自动驾驶的瓶颈与进化。传统E2E方法(如UniAD、VAD)通过多任务学习整合感知-预测-规划。
但是其面临闭环性能落差:在动态交互场景下表现下滑,暴露对自车状态的过拟合问题;缺乏常识推理:难以处理复杂因果决策(如“施工绕行需提前变道”)两大挑战。
视觉-语言大模型(LLaVA、QwenVL等)凭借****细粒度视觉理解*和*世界知识*,成为自动驾驶的新引擎,但直接应用存在计算冗余*:高分辨率图像产生海量token;数值推理短板:文本化轨迹输出难以精确量化控制量两大问题。
基于以上问题,小米汽车团队提出ORION框架,首次通过生成式规划器构建VLM推理空间与轨迹行动空间的可微分连接。灵感来自条件生成模型——**既然图像和文本能被统一表征,那么语义推理与轨迹规划为何不可?**就像AI绘画中提示词控制图像生成,ORION让语义指令‘画’出最优轨迹!
一、Bench2Drive评测数据集
Bench2Drive 是首个以闭环方式评估端到端自动驾驶系统 (E2E-AD) 多种能力的基准测试平台。Bench2Drive 包含 200 万帧完整标注的官方训练数据,这些数据由世界模型强化学习 (RL) 专家 Think2Drive 从 13638 个短视频片段中收集而来,并均匀分布在 CARLA Leaderboard v2 中的 44 种交互场景(切入、超车、绕行等)、23 种天气条件(晴天、雾天、雨天等)和 12 个城镇(城市、乡村、大学等)中。
Bench2Drive也是目前一个常用的端到端仿真测试框架。研究人员可以在统一的框架下训练、评估和优化自动驾驶系统,为自动驾驶技术的研发提供重要支持。在CARLA模拟器构建的Bench2Drive数据集中,小米汽车的ORION以****77.74驾驶分(DS)*和*54.62%成功率(SR)****远超SOTA方法(提升14.28分和19.61%),刷新闭环自动驾驶新高度!
ORION 在 Bench2Drive 闭环评估集上的定性结果。棕色、红色和绿色分别代表行动决策、影响驾驶决策的物体以及预测轨迹。
**
*二、ORION的破局之道*
核心创新:*生成式规划器 + QT-Former时序模块*,构建「视觉-语义-行动」统一空间!
ORION 巧妙地引入了 QT-Former 用于聚合长期历史上下文信息,其受Q-Former启发,通过历史查询+记忆库压缩多帧视觉token,解决VLM的时序建模瓶颈。
VLM 用于驾驶场景理解和推理,将VLM的“语义指令”(如“礼让行人”)转化为可微分轨迹分布,支持多模态概率采样。,并启发式地利用生成模型对齐了推理空间与动作空间,实现了视觉问答(VQA)和规划任务的统一端到端优化。论文项目及代码如下:
Paper:https://arxiv.org/abs/2503.19755
Project:https://xiaomi-mlab.github.io/Orion/
Code:https://github.com/xiaomi-mlab/Orion
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。