“ 分工才是社会进步的动力,大模型产业链才刚刚开始 ”
可能很多人看了标题会觉得很奇怪,大模型与社会分工有什么关系,产业链和模块化又是什么鬼,我们不是学习大模型技术和应用的么 ?怎么越来越跑偏了。
其实,写这篇文章的目的就是为了解放大家的思想,要明白大模型不是一个事,也不是一个人做的事,它是一个庞大的系统,需要大家分工合作才行。
大模型与社会分工,产业链与模块化的关系
这篇文章可能并不是一篇技术文章,可能更多的是从经济和管理和社会发展等多个方面讲述一下大模型技术,防止有些人钻牛角尖。
在之前的文章中曾不只一次的说过,技术人员容易钻牛角尖,总是陷入技术之上的陷阱中去,这里并不是说技术不重要,而是技术的本质决定了它只能在特定的环节扮演特定的角色,而不是有了技术就有了一切。
这是一个系统化的过程,每个环节都有其特定的角色,谁离了谁都能转,谁离了谁也转不了。
政治上说,人与动物的根本区别是会使用和制造工具;而社会的发展与进步靠的是社会分工,而不是某一个人的力量,如果没有分工,可能人类也发展不到今天。
为什么说分工很重要?现在先假设一个问题,如果没有分工会怎么样?
没有分工,那么社会中的每个人都需要对自己的全部负责,从吃喝拉撒睡到物质生活和精神生活;这样人类就失去了进步的可能。
比如说,没有分工,一个人想吃饭,那么他就需要去做饭,做饭需要原材料,包括蔬菜,肉类等,那么这个人就需要去种菜,去养殖;这样每个人都会把自己大量的时间和精力浪费在这些事情上。
那怎么发展技术,怎么发展科技,怎么发展文化,艺术等等?
因此,分工才是社会进步的主要动力。
说到大模型也是如此,大模型技术是一个生态,是一个系统,单纯的大模型技术没有任何意义,大模型技术的价值在于应用场景;因此,搞大模型就需要有人搞大模型技术,也要有人搞大模型应用,两者缺一不可。
没了大模型技术,大模型应用就成了无根之水,空中楼阁;大模型技术没有应用场景,那么大模型技术就失去了价值,没有了研究意义。
因此,有些人钻进大模型技术的牛角尖中出不来,每天都在研究大模型这个技术原理是什么,那个功能是怎么实现的,除非你是真的要从事搞纯技术的大模型,否则这样研究下去根本没有太大意义。
大模型作为一项划时代的技术,他的落地需要各种上下游的支持,比如上游最基础的能源,算力的供应;中游大模型架构与算法的开发,下游基于大模型的应用场景。
由这些上下游组合在一块,就成了大模型技术的产业链;再细化一点来说,在能源和算力方面,需要解决发电问题,GPU的运算效率,基于云计算的并行计算等;而中游的大模型规模,架构,训练与调优,数据的组织与清洗等;到下游的知识库供应商,Agent开发,AIGC工具等等。
大模型的发展促进其上下游的发展,而上下游的发展又反向促进大模型的进步。
因此,不同的人,不同的企业,在大模型技术的发展过程中扮演着重要的角色;没有谁能脱离谁的存在,也没有谁会离不开谁。
我们需要做的是,确定我们在整个产业链中扮演着哪个角色,存在于那个环节;而不是如无头苍蝇一样,到处乱撞,最终也没一个结果。
有人搞大模型算法研发,他是不是在搞大模型?有人在搞知识库的研发,那他是不是在搞大模型?有人在做AIGC的工具,那他是不是也在搞大模型?
并不是说只有做大模型架构和算法的人才叫搞人工智能,只要处于人工智能产业链的其中一个环节,那么就是在搞大模型。
比如说,openAI的模型那么强大,但它除了需要强大的技术和算法之外,还需要强大的数组支撑,那么你是否可以做数据供应商?当然,前提是合法合规。
从技术人员的角度出发,我们平常在做项目时,会根据项目的功能把一个系统拆分成多个不同的模块,各个模块之间互相联系,但又相互独立,这就是传说中的高耦合,低内聚。
而这种开发方式就叫做模块化,工程模块化,每个模块负责每个模块的功能,相互之间互不影响。
因此,大模型技术上下游也充斥着大量的供应商和服务商;在以后,有些人和企业会专注于开发更好的大模型,也有些人和企业会专注于构建基于大模型的上层应用,没有什么谁对谁错,谁好谁坏。
如果你觉得有足够的功底,比如算法,机器学习等;那么你就可以搞大模型技术,考虑怎么把大模型做到更好,更强;如果你对业务比较熟悉,又了解大模型技术,那么你就可以构建和你业务相关的,基于大模型技术的产品。
总之,大模型产业链处于刚开始阶段,我们任何人都可以投身其中的一个环节。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。