故障分析怎么做?朴素KG方案及LLM+Graph RAG方案实现思路

故障分析是知识图谱的一个重要应用,各种高端装备领域的故障案例文本是由业务专家或者专业维修人员撰写的描述相关设备异常、以及故障排查步骤的记录,该记录包括故障现象、故障原因、解决方法以及排故过程等,基于这些数据,可以实现一些问题的快速排查;

更抽象一点,就是:故障检测(从多模态数据源中检测系统是否存在异常);故障分类(在异常检测能力的基础上,分析出大致的异常类型);根因定位(即在众多异常中,找到问题根本原因);故障报告生成(即根据分析结果生成故障报告和恢复建议);识别用户自然语言提问(用户可以使用自然语言进行提问,模型会理解用户语义并分析出用户给出的任务)

我们今天来看两个方案,一个是基于朴素知识图谱方案进行故障分析,一个是基于Graph RAG进行故障分析的简单方案,后者显得更粗暴。

一、基于朴素知识图谱方案进行故障分析

我们之前有讲过故障知识图谱进行分析的一个工作,如在文章《故障知识图谱技术落地探索:装备制造故障知识图谱构建及其应用案例剖析总结》(https://mp.weixin.qq.com/s/CcgLQfgrohwgAQ3TbURlLQ)有过介绍,这里再说下。

先说故障知识图谱构建,这块有个比赛, https://www.datafountain.cn/competitions/584。

对于传统的方案,有个项目https://github.com/wangrenyisme/Shukongdashi,要求从网络上爬取相关设备故障和维修解决方式,并构建知识库,当设备出现故障时,用户通过输入数控机床相关参数(品牌、型号、故障代码、某个或多个超出阈值参数、故障描述(文字或语音)等),系统可以根据知识库来进行故障诊断和排除,如果没有满意的方案,系统会再次进行网络爬取,如果答案有效,则对知识库进行补充和优化。

其中,在技术方案上,主要的数据来源是《实用数控机床故障诊断及维修技术500例》这个PDF文档,对文档里的每一条故障描述进行拆解和分类(CNN),构建出了5中三元式推理规则,分别为:故障现象和故障现象之间存在并发症,故障前执行的操作间接导致的故障现象,某故障原因导致的故障现象,报警信息伴随的故障现象,故障部位常见的故障现象。使用Neo4j图数据库存储。

当用户输入一条故障信息时,按照上面构建RDF的方法,对故障描述先按照标点符号分句,然后使用CNN分类,识别出此次故障中用户执行了哪些操作,出现了哪些故障现象,然后根据知识图谱进行对照,除了推理出故障原因以及解决办法之外,还会推理出与已经发现的故障相关的未发现的设备故障,通过用户进一步检查反馈,可以进一步提高诊断结果的可靠性。如果用户没有找到满意的解决方法,还可以通过在线爬取网上的解决办法来做参考,如果找到了满意的解决办法,系统会将此次维修记录补充到知识图谱中。

最终做成的效果也不错:

而进入大模型时代后,就可以使用RAG的方式来进行排查,例如文章(https://www.asktempo.com/news/industry-information/1777.html)中,针对故障诊断这个话题,有一些大概的宏观思路。

思路很大,原文论述是:当接收到设备故障诊断任务,首先深入理解用户意图,然后基于思维链 CoT技术,大模型将复杂问题分解为一步一步的子问题并依次进行求解,并自主规划最佳任务执行路径,智能地编排并调用模型库诊断模型、机理模型、故障知识库和维修知识库中的经验知识、编写代码计算等不同形式的任务,最后通过大模型的智能分析和总结,给出故障诊断结果、故障定位及故障维修建议。

其实就是agent编排,但其中如何进行流程设计,就是核心点了。

而更大范围的,这其实是属于AIOPS的范畴,所以也可以关注https://www.aiops.cn/aiopschallenge/中的一些思路,例如《构建由大模型辅助的基于多模态数据融合的异常检测、根因诊断和故障报告生成系统》(https://bizseer-png.oss-cn-beijing.aliyuncs.com/2023年挑战赛PPT/季军%20DDopS战队.pdf)提到的方案。

里面提到的思路,其实又包括了知识图谱/事件图谱。

二、基于Graph RAG进行故障分析的简单方案

最近的工作《Knowledge Management for Automobile Failure Analysis Using Graph RAG》(https://arxiv.org/pdf/2411.19539)中提到的基于Graph RAG的思路,可以看看思路,其要解决的问题是如何利用图检索增强生成(RAG)和大模型(LLMs)进行汽车故障分析的知识管理,简单思路就是:首先利用LLMs处理用户查询,识别出与查询相关的汽车问题和故障术语。根据检索到的术语提取子图。每个术语对应的子图定义为目标节点及其相连的边和节点,然后利用LLMs过滤提取的子图,选择与用户查询相关的子图,最后将最终过滤的子图和用户查询一起作为提示输入LLMs,生成最终答案。

这个核心是如何从现有的知识图中提取有用的子图,并将其与LLMs结合以提高故障分析的效率和准确性

首先,有一个故障图谱,需要先从故障文档中提取组件之间的关系,如下所示:

其中提到的Graph RAG思路,走的是检索底层KG的思路,示意图如下:

以及提出的IR-based Graph RAG思路,很粗暴,示义图如下

首先,给定用户查询,LLM处理输入并检索一组相关术语,通过识别相关的汽车问题和故障:

其中是指示检索相关单词的提示。

其次,基于检索到的单词提取子图。这种提取涉及生成一个基于规则的搜索查询,该查询没有语法错误

对于每个单词,定义一个子图为一组关系,包括对应于目标词的节点,以及边和连接的节点。数学上,子图可以表示为:

其中是目标词节点,是与相连的节点集,是连接到或到的边集。但,这些形成了一跳链(这个的问题很大,单跳并不能解决复杂的检索问题)。此外,子图然后表示为图5中显示的文本集合。

接着,使用LLM过滤提取的子图,选择与用户问题相关的候选项。 因为许多边连接到特定单词(如"engine"),导致提取了许多无关的子图,所以这个步骤是必要的。

通过使用LLM,这个步骤减轻了采用IR方法进行KGQA时提取过多子图的常规问题。

设代表提取的子图集。LLM应用一个过滤函数Filter,选择一个与查询相关的子图子集 :

其中是包含过滤子图指令的提示。

最后,将最终过滤的子图以及用户的问题作为提示提供给LLM,以生成最终答案。 如果选定的子图数量太多且超过了提示的token限制,则在包含在提示之前随机移除子图:

其中是指示LLM推理并生成答案的提示。然后LLM生成最终答案,如下所示:

总结

本文主要围绕故障分析看了两个方案,一个是基于朴素知识图谱方案进行故障分析,一个是基于GraphRAG的方案。后者的本质走的就是召回的路线,其核心点还是说如何召回更为相关的子图,所以,做了一些过滤操作。但缺点很明显,就是没有做到多跳子图,所以大家也可以多尝试。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

03-20
### LLMRAG结合的技术实现 #### 技术架构概述 LLMRAG的结合可以通过一种混合式的架构来完成,其中检索模块负责从外部知识源获取相关信息,而生成模块则利用这些信息生成高质量的回答。这种方法不仅提高了模型的知识覆盖范围,还显著降低了错误率和“幻觉”现象的发生概率[^4]。 #### 数据流过程 在具体的实施过程中,当接收到一个问题时,系统会先通过检索器访问外部数据库或文档集合,提取出与问题最相关的若干片段作为上下文输入。随后,这些片段连同原始问题一起传递至预训练好的大型语言模型中进行处理并最终输出答案[^1]。 #### 实现优势 此方法的优势在于其能够动态地调用最新、最准确的数据资源支持实时查询需求,而不依赖于固定时间点之前已有的静态参数化记忆内容。因此,在面对快速变化领域内的新情况或者需要高度精确表述的任务场景下尤为适用[^3]。 ```python def rag_based_llm(query, database): # Step 1: Retrieve relevant documents from the external knowledge base. retrieved_docs = retrieve_relevant_documents(query, database) # Step 2: Pass both query and retrieved information into an LLM for generation. response = large_language_model.generate(query=query, context=retrieved_docs) return response # Example function definitions (not actual implementations). def retrieve_relevant_documents(query, db): ... large_language_model = LargeLanguageModel()... ``` 上述伪代码展示了基本的工作流程:对于每一个用户提问 `query` ,我们都会去对应的资料库 `database` 中寻找关联条目;之后把找到的结果送入到我们的大语言模型里头加工成最后答复形式。 #### 应用实例分析 实际操作层面来看,这样的组合已经被广泛采纳用于创建智能客服对话代理程序还有其他涉及自然语言理解的应用场合之中。比如某些公司正在开发的产品线里面就包含了此类技术的支持方案设计思路讨论等内容[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值