打造自己的RAG解析大模型:金融、财务、保险、证券的AI助理知识库PDF文档解析,只需看这一篇

金融、财务、保险和证券领域的PDF文档解析,是构建AI助理知识库的重要技术环节。这些文档通常包含事件总结、财务报表、年度销售等核心表格数据。通过版面分析、表格识别和文本提取,将文档内容结构化并存储到向量数据库中,为RAG系统提供高质量数据块支持。这些解析数据的使用场景包括:智能投顾系统提供实时数据支持、财务报表的自动化审计、保险理赔的智能核算以及证券分析中的自动数据提取,显著提升工作效率与决策精准度。这种解析能力能够帮助企业快速处理大规模非结构化文档,降低人工操作成本并优化核心业务流程。

整体解析模型服务搭建

StructureSystem解析模型整合了文本检测与识别、版面解析和表格识别功能,能够针对结构化和版面丰富的PDF文档实现高效解析。这种能力可以满足金融、财务、保险、证券等领域的文档处理需求,适配多样化的业务场景。通过结合标注和训练能力,企业能够定制化打造高性能解析模型,大幅提升文档处理效率,确保数据提取的精准性与可靠性,为业务智能化升级提供强有力的技术支持。

开放的训练能力

PaddlePaddle通过其核心套件PaddleOCR和PaddleDetection,提供了针对文本、表格和版面解析的训练能力,并开源了多种标注工具。这些工具和模型为各行业提供了灵活的选择。不同垂直领域可以根据通用识别模型的精度表现,评估是否需要进行行业特定的训练集标注,以优化模型的识别效果,从而在实际应用中实现更高的准确性与效率,充分满足行业需求并提升数据解析能力。

模型的识别效果

上市年报无线格报表识别效果:

上市年报版面识别效果:

写在最后

金融、财务、保险和证券领域的PDF文档解析技术已相当成熟,结合RAG(检索增强生成)系统,可以轻松导入文档并实现高效解析,快速构建结构化知识库或知识图谱。这些知识库通过向量化处理,使数据查询与调用更加智能化。结合AI助理应用,这些技术不仅帮助企业提效降本,还为复杂业务场景提供了创新性解决方案,大幅提升了决策支持和运营效率。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值