论文介绍
题目:Terra: A Multimodal Spatio-Temporal Dataset Spanning the Earth
会议:Conference on Neural Information Processing Systems 2024
论文:https://neurips.cc/virtual/2024/poster/97768
数据/代码:https://github.com/CityMind-Lab/NeurIPS24-Terra
NeurIPS 2024遥感方向论文合集:NeurIPS024
创新点
-
覆盖范围广:Terra 数据集提供全球范围内45年的时空数据,涵盖648万个高分辨率网格点。
-
多模态集成:整合时间序列、地理图像和文本数据,支持多模态分析与高级模型开发。
-
高分辨率与灵活性:时间分辨率细至3小时,空间分辨率高达0.1°,并支持多尺度聚合。
-
推动时空智能研究:为多模态学习和时空数据挖掘提供统一平台,填补现有数据集在广度和深度上的不足。
数据
Terra 数据集包括 时间序列数据、文本数据 和 图像数据,覆盖广泛的时空范围,具有高分辨率和多样性。
1. 时间序列数据
数据来自 Global Water (GloH2O) Measurement Project,整合了以下两种主要产品。对于降水记录,优先使用 MSWEP 数据,以替代 MSWX 降水数据。
(1)MSWX:一个高分辨率(3小时、0.1°)、偏差校正的气象数据产品,覆盖全球,包含10个变量:
-
降水量(Precipitation,单位:mm/3h)。
-
气温(Air temperature,单位:°C)。
-
日最低气温(Daily minimum temperature,单位:°C)。
-
日最高气温(Daily maximum temperature,单位:°C)。
-
地表气压(Surface pressure,单位:Pa)。
-
相对湿度(Relative humidity,单位:%)。
-
比湿(Specific humidity,单位:g/g)。
-
风速(Wind speed,单位:m/s)。
-
下行短波辐射(Downward shortwave radiation,单位:W/m²)。
-
下行长波辐射(Downward longwave radiation,单位:W/m²)。
(2)MSWEP:一种结合测站、卫星和重分析数据的全球降水产品,具有更高的降水估算精度,特别适用于测站稀疏或对流主导的区域。
-
数据量:共有 6.82万亿条记录,并通过空间和时间聚合生成 9 种变体数据集。
-
覆盖范围:
-
时间:从 1979 年至 2024 年,跨度 45 年(共计 16,436 天)。
-
空间:648万个网格,支持 0.1° 的高空间分辨率。
-
分辨率:
-
时间分辨率:3小时、1天、1个月。
-
空间分辨率:0.1°、0.5°、1°。
2. 文本数据
文本数据来源于全球地理和气候数据库:
-
气候信息:来自 Köppen 气候分类项目,描述了1901年至2010年的气候类型,使用三位字母代码表示气候类别(如“热带”、“干旱”)。
-
地形信息:来自 ETOPO2v2 数据集,提供地形、海岸线等信息。通过计算每个网格区域的平均值,生成该区域的平均海拔。
-
土地覆盖信息:来源于 C3S 全球土地覆盖产品(2022年数据),包含38类土地覆盖(如“雨养农田”和“落叶阔叶树”)。
-
国家归属:基于 world-geo-json 数据。
-
补充文本生成:
-
利用大型语言模型(LLM),如 LLaMA3,生成地理相关的补充描述(如区域气候、植被类型等)。
-
提示工程:采用空间提示工程,为 LLM 提供更精准的查询方向,减少生成文本中的错误信息。
-
局限性:
-
文本分辨率较低(未达到 0.1°),生成过程受限于时间和资源成本。
-
使用 LLM 生成的文本存在一定的陈旧性。
3. 图像数据
基于 Mercator 投影,对地球按不同空间分辨率网格化,使用 GMT 和 PyGMT 工具生成地理图像。
选取常用地理信息图像,包括:
-
地球地形图:展示地球表面的平均海拔。
-
重力异常图:归一化后的重力值,用于识别地质结构。
-
磁异常图:显示地球磁场的局部异常。
-
地形坡度图:包含地形的高程和推算的重力信息。
-
水陆特征图:展示水体和陆地的分布。
-
垂直重力梯度图:用于检测地质结构中的小型地质体。
-
补充数据:卫星遥感图像:可通过 ArcGIS 平台获取每个网格的相关卫星影像(例如 Sentinel-2 数据)。
-
局限性:
-
未达到 0.1° 的图像分辨率,因生成成本高。
-
卫星图像的更新和分发受限制,可能存在过时的问题。
应用案例
时空分析任务
-
任务:基于过去的降水数据预测未来降水量(7天、15天、30天)。
-
模型:
-
时间序列模型:TimesNet、FEDformer、PatchTST、DLinear。
-
时空模型:STAEformer、STID、GWNet、STGCN。
-
专用降水模型:ConvLSTM。
-
简单基线方法:历史均值(HI)。
-
结果:
-
TimesNet(时间序列模型)表现最佳,因其有效结合时间嵌入信息。
-
时空模型未显著优于时间序列模型,可能因为降水数据的非平稳性和极端波动性。
空间分析任务
1) 基于位置的空间变量预测
-
任务:通过地理坐标预测环境变量(降水、风速、温度)。
-
模型:
-
SatCLIP(基于卫星预训练)。
-
GeoCLIP(基于地理标记街景图像)。
-
CSP(针对特定任务设计的位置编码模型)。
-
结果:
-
SatCLIP 表现最佳,因其语义信息更契合环境相关任务。
2) 基于视觉-语言的空间变量预测
-
任务:利用卫星影像和文本描述,预测空间变量。
-
模型:
-
UrbanVLP、UrbanCLIP(视觉-语言模型)。
-
CLIP(经典多模态模型)。
-
结果:
-
不同国家的性能因地理特性差异而有所波动。
-
UrbanVLP 整体表现较佳,展现了 Terra 数据集在多模态分析中的潜力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。