本章将聚焦当前备受瞩目的开源模型 DeepSeek-V3。作为一款自称超越所有开源模型,甚至在部分能力上超过闭源模型的产品,DeepSeek-V3展现了惊人的潜力。不过,从 RAG 系统的实际需求来看,采用 DeepSeek-V3 似乎有些“大材小用”,它更适合应用于数学与代码等需要强推理能力的场景。
下表是DeepSeek-V3官网给出基础模型的测试打分:
官网打分部分截取
从这份测试报告中可以看到,DeepSeek-V3 在代码(Code)和数学(Math)领域全面超越了几款主流开源模型,尤其是阿里的 Qwen2.5-72B。值得注意的是,Qwen2.5-72B 本身已是一款强大的模型,尤其在 Code 和 Math 上表现不俗,而报告中显示 DeepSeek-V3 的性能超越了它,这无疑为业界带来了一次令人瞩目的技术突破,进一步巩固了其在高复杂性任务中的领先地位。
DeepSeek-V3介绍
我们提出了 DeepSeek-V3,这是一个强大的混合专家 (MoE) 语言模型,总共有 671B 个参数,每个 token 激活 37B。为了实现高效的推理和经济高效的训练,DeepSeek-V3 采用了多头潜在注意力 (MLA) 和 DeepSeekMoE 架构,这些架构在 DeepSeek-V2 中得到了彻底的验证。此外,DeepSeek-V3 开创了一种无辅助损失的负载平衡策略,并设置了多 token 预测训练目标以获得更强大的性能。我们在 14.8 万亿个多样化和高质量的 token 上对 DeepSeek-V3 进行了预训练,然后进行监督微调和强化学习阶段,以充分利用其功能。综合评估表明,DeepSeek-V3 优于其他开源模型,并实现了与领先的闭源模型相当的性能。尽管性能出色,但 DeepSeek-V3 仅需要 2.788M H800 GPU 小时即可完成完整训练。此外,它的训练过程非常稳定。在整个训练过程中,我们没有遇到任何无法恢复的损失峰值或执行任何回滚。(摘自DeepSeek-V3官网)
根据 DeepSeek-V3 官网说明,V3 在以下三个方面实现了显著改进:架构设计、预训练方法以及训练后优化。这些提升使其在多个任务中展现了更强的性能和更广泛的适用性。
架构:创新负载平衡策略和训练目标
- 在 DeepSeek-V2 高效的架构之上,我们首创了一种无辅助损失的负载平衡策略,最大限度地减少了因鼓励负载平衡而导致的性能下降。
- 我们研究了多标记预测 (MTP) 目标,并证明它有利于模型性能。它还可以用于推测解码以加速推理。
预训练:实现终极训练效率
-
我们设计了FP8混合精度训练框架,并首次在超大规模模型上验证了FP8训练的可行性和有效性。
-
通过算法、框架和硬件的协同设计,我们克服了跨节点 MoE 训练中的通信瓶颈,几乎实现了完全计算-通信重叠。
这大大提高了我们的训练效率并降低了训练成本,使我们能够在不增加额外开销的情况下进一步扩大模型规模。
-
我们以仅 2.664M H800 GPU 小时的经济成本,在 14.8T token 上完成了 DeepSeek-V3 的预训练,得到了目前最强的开源基础模型,预训练之后的后续训练阶段仅需 0.1M GPU 小时。
训练后:来自 DeepSeek-R1 的知识提炼
- 我们引入了一种创新方法,将长思维链 (CoT) 模型(特别是 DeepSeek R1 系列模型之一)中的推理能力提炼到标准 LLM(尤其是 DeepSeek-V3)中。我们的流程巧妙地将 R1 的验证和反射模式融入 DeepSeek-V3,并显著提高了其推理性能。同时,我们还控制了 DeepSeek-V3 的输出样式和长度。
DeepSeek-V3部署
DeepSeek-V3 可以使用以下硬件和开源社区软件在本地部署:
- DeepSeek-Infer 演示:我们为 FP8 和 BF16 推理提供了一个简单、轻量级的演示。
- SGLang:完全支持 BF16 和 FP8 推理模式下的 DeepSeek-V3 模型,并即将推出多令牌预测功能。
- LMDeploy:支持本地和云部署的高效 FP8 和 BF16 推理。
- TensorRT-LLM:目前支持 BF16 推理和 INT4/8 量化,即将支持 FP8。
- vLLM:支持具有 FP8 和 BF16 模式的 DeepSeek-V3 模型,实现张量并行和流水线并行。
- AMD GPU:支持在 BF16 和 FP8 模式下通过 SGLang 在 AMD GPU 上运行 DeepSeek-V3 模型。
- 华为Ascend NPU:支持在华为Ascend设备上运行DeepSeek-V3。
接下来,将详细讲解如何使用 SGLang 和 vLLM 高效部署 DeepSeek-V3 的具体步骤。
SGLang部署DeepSeek-V3
GPU建议
- 8 个 NVIDIA H200 GPU。
如果您没有具有足够大内存的 GPU,请尝试多节点张量并行。
安装和启动
如果启动服务器时遇到错误,请确保权重已下载完成。建议提前下载或多次重启,直到下载完所有权重。
使用 Docker(推荐)
# Pull latest image``# https://hub.docker.com/r/lmsysorg/sglang/tags``docker pull lmsysorg/sglang:latest`` ``# Launch``docker run --gpus all --shm-size 32g -p 30000:30000 -v ~/.cache/huggingface:/root/.cache/huggingface --ipc=host lmsysorg/sglang:latest \` `python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-V3 --tp 8 --trust-remote-code --port 30000
对于高 QPS 场景,添加`--enable-dp-attention`参数以提高吞吐量。
使用 pip
# Installation``pip install "sglang[all]>=0.4.1.post5" --find-links https://flashinfer.ai/whl/cu124/torch2.4/flashinfer`` ``# Launch``python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-V3 --tp 8 --trust-remote-code
对于高 QPS 场景,添加`--enable-dp-attention`参数以提高吞吐量。
使用 OpenAI API 发送请求
import openai``client = openai.Client(` `base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")`` ``# Chat completion``response = client.chat.completions.create(` `model="default",` `messages=[` `{"role": "system", "content": "You are a helpful AI assistant"},` `{"role": "user", "content": "你真的那么强吗?"},` `],` `temperature=0,` `max_tokens=64,``)``print(response)
vLLM部署DeepSeek-V3
vLLM v0.6.6 支持 NVIDIA 和 AMD GPU 上 FP8 和 BF16 模式的 DeepSeek-V3 推理,除了标准技术外,vLLM 还提供_管道并行性_,让您可以在通过网络连接的多台机器上运行此模型。
介绍管道并行
-
单 GPU(无分布式推理):如果您的模型适合单 GPU,则可能不需要使用分布式推理。只需使用单 GPU 运行推理即可。
-
单节点多 GPU(张量并行推理):如果您的模型太大,无法放入单个 GPU,但可以放入具有多个 GPU 的单个节点,则可以使用张量并行。张量并行大小是您要使用的 GPU 数量。例如,如果您在单个节点中有 4 个 GPU,则可以将张量并行大小设置为 4。
-
多节点多 GPU(张量并行加流水线并行推理):如果您的模型太大,无法放入单个节点,则可以将张量并行与流水线并行结合使用。张量并行大小是您希望在每个节点中使用的 GPU 数量,流水线并行大小是您希望使用的节点数量。例如,如果您在 2 个节点中有 16 个 GPU(每个节点 8 个 GPU),则可以将张量并行大小设置为 8,将流水线并行大小设置为 2。
简而言之,您应该增加 GPU 数量和节点数量,直到您有足够的 GPU 内存来容纳模型。张量并行大小应该是每个节点中的 GPU 数量,管道并行大小应该是节点数量。
安装和启动
通过查阅 vLLM 的 issue 列表可以发现,目前 vLLM 对 DeepSeek-V3 的支持仅处于基础运行阶段,性能尚未达到预期。因此,暂不提供安装和启动的详细指南。待 vLLM 的增强计划完成后,我们会及时更新相关内容并提供完整的部署说明。
部署推荐
建议企业采用SGLang部署DeepSeek-V3
写在最后
DeepSeek-V3 在代码和数学领域表现突出,对于关注这些方向的企业来说无疑是一大喜讯。毕竟,这两项能力在市场上有着广阔的应用前景,而以往具有高性能的模型大多为闭源且高成本。DeepSeek-V3 的出现,以开源形式提供了强大的能力,不仅降低了门槛,也为创业和技术创新提供了更多可能性。它的发布在大模型领域引发了不小的轰动,为行业带来了更多选择和活力。
题外话:在 DeepSeek-V3 提供的聊天门户中,我尝试了一段 Prompt 的生成,出于好奇,将这段 Prompt 分别用于测试文心一言、豆包、Kimi、元宝和通义等模型。结果如何,你们一定想不到!建议大家亲自尝试一下。
Prompt如下:
帮我写 1 个面向年轻女性宣传一款内衣的品牌营销slogan,简洁吸睛,富有创意,字数要求150字。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。