Deepseek+Cherry Studio搭建本地知识库

本文目录

  • 一、注册华为硅基流动平台

  • 1、注册

  • 2、创建API密钥

  • 二、安装Cherry Studio

  • 三、Cherry Studio连接硅基流动模型

  • 四、构建本地知识库

  • 1、添加嵌入式模型

  • 2、添加知识库

  • 3、添加文件

  • 五、使用知识库

一、注册华为硅基流动平台

华为硅基流动平台地址:

https://cloud.siliconflow.cn/i/EMsUiGP9

1、注册

注册后有14元的余额,2000万token配额。我是因为问了问题,所以余额不足14元。

2、创建API密钥

点击左侧“API密钥”菜单,创建自己专属的API key,创建完后,保存好自己的key。

二、安装Cherry Studio

Cherry Studio官网地址:https://cherry-ai.com/

三、Cherry Studio连接硅基流动模型

1、点击左下角的设置,选择硅基流动

2、打开开关

3、点击管理,添加相关模型,如deepseek-ai/DeepSeek-R1deepseek-ai/DeepSeek-V3

4、填入硅基流动的API key

5、点击检查,选择检测的模型,如deepseek-ai/DeepSeek-R1

四、构建本地知识库

1、添加嵌入式模型

硅基流动模型底部点击管理按钮,添加嵌入式模型,如免费的 BAAI/bge - m3 模型或根据需求选择 Pro/BAAI/bge - m3 等收费模型。

2、添加知识库

点击左侧知识库按钮,点击添加,填写知识库名称,选择嵌入模型。

3、添加文件

点击 “知识库” 按钮,选择 “添加文件”,选择支持的文件格式,如 pdf、docx、pptx、xlsx、txt、md 等,系统会自动进行向量化处理。上传成功则会显示绿色的√。

五、使用知识库

在聊天窗口选择知识库图标,选中之前创建的知识库,如本例为我的知识库

可以在聊天区域询问有关知识库的问题了。

题外话:上篇文章介绍了如何配置本地模型,但由于我的电脑限制,只下载了1.5b的模型,同样我配置了本地知识库,同样的问题问1.5b模型,感觉它的回答不知所云,所以一般电脑还是放弃本地模型吧,推荐使用华为硅基流动平台的模型+本地知识库。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用Cherry Studio搭建本地知识库 #### 准备工作 为了使用Cherry Studio搭建DeepSeek本地知识库,需先完成环境准备。确保拥有可运行的Python环境以及必要的依赖项安装工具如`pip`[^1]。 #### 获取源码 前往GitHub仓库下载或克隆项目代码至本地机器上。通过命令行执行如下操作来获取最新版本的Cherry Studio源码: ```bash git clone https://github.com/kangfenmao/cherry-studio.git cd cherry-studio ``` #### 安装依赖包 进入项目目录后,按照官方文档指示安装所需的Python库和其他软件组件。通常情况下,这一步骤可以通过执行以下脚本来自动完成: ```bash pip install -r requirements.txt ``` #### 配置Embedding服务 对于嵌入式模型的支持,可以选择第三方服务商提供的API接口,比如硅基流动平台。注册账户并申请相应的API密钥之后,在配置文件中填入这些凭证信息以便后续调用远程计算资源[^3]。 #### 启动应用服务器 一切就绪后,可以启动应用程序的服务端部分。一般而言,此过程涉及设置一些环境变量,并最终运行一个简单的HTTP服务器监听特定端口上的请求: ```bash export DEEPSEEK_API_KEY="your_api_key_here" python app.py ``` 此时应该能够在浏览器里打开指定URL地址查看到已部署成功的Web界面[^2]。 #### 数据导入与管理 最后就是将自有资料集上传至系统内形成个性化知识图谱的过程了。这部分功能可能需要借助图形界面上的相关按钮实现;也可能支持批量处理CSV/JSON格式的数据文件作为输入源之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值