多模态AI模型:读懂医学影像的超级大脑

2025年初,全球首款通过美国FDA认证的“AI放射学助手”横空出世。这款基于多模态大语言模型(LMMs)的系统,不仅能秒读CT/MRI影像生成诊断报告,还能结合患者病史提出治疗方案建议。在临床试验中,其对肺癌筛查的敏感度达到98.7%,误诊率仅1.2%,甚至比资深放射科医生还精准。这场由代码驱动的医疗革命,正悄然改变着300万放射科医生的职业命运。

LLMs和LMMs在放射学和医疗保健领域的不同应用

01 大语言模型:医疗领域的智能助手

大语言模型,如GPT-4等,凭借其卓越的复杂推理和理解能力,在医疗保健领域展现出了巨大的应用前景。它们可以处理和分析大量的文本数据,为医生提供决策支持,为患者提供个性化的医疗服务。

不同的自然语言处理(NLP)和语言建模算法及技术的引入时间线

  • 应用场景

1)放射学报告的自动化与优化:

大语言模型能够标记并纠正放射学报告中的常见错误,以适合患者理解的水平解释放射学报告结果,并根据患者病史和影像学表现提出鉴别诊断。例如,Gertz等人(2024)的研究表明,GPT-4在检测放射学报告错误方面具有潜在应用价值。此外,大语言模型还可以生成简洁的临床总结,帮助放射科医生快速把握患者的关键信息,从而提高诊断效率和准确性。

2)临床决策支持:

大语言模型可以根据患者的病史、成像结果以及临床指南,为医生提供诊断和治疗建议。例如,Gertz等人(2023)的研究展示了GPT-4在自动化确定放射学检查和协议方面的可行性。通过整合患者的病史和成像数据,大语言模型能够为医生提供个性化的检查建议,从而提高诊断的准确性和效率。

3)医疗教育与患者沟通:

大语言模型可以用于教育患者和放射学实习生,解释复杂医学概念,简化诊断报告,回答有关放射学检查程序的问题。例如,Berigan等人(2024)的研究表明,大语言模型生成的放射学报告总结可以提高患者的理解度。此外,大语言模型还可以通过聊天机器人的形式,为患者提供个性化的医疗咨询和解答,增强患者对医疗过程的参与感和信任度。

  • 技术原理

大语言模型的开发涉及多个关键技术,包括词元嵌入、变压器网络、自监督预训练和微调等。词元嵌入将文本转换为数值向量,表示单词的语义含义;变压器网络通过自注意力机制处理序列数据;自监督预训练利用大量未标记的文本数据训练模型,学习语言的规则和模式;微调则是在预训练模型的基础上,针对特定任务进行有监督的学习。

词元化将文本分解为更基本的单元

02 大型多模态模型:解锁医学影像新潜能

随着技术的发展,大语言模型已经不再局限于文本处理,大型多模态模型(LMMs)应运而生。这些模型能够处理多种数据类型,如图像、视频、音频等,为医学影像学带来了新的可能性。

  • 多模态模型的类型与应用

1)视觉 - 语言模型:

这类模型处理图像和文本,针对特定的视觉 - 语言任务进行优化,如视觉问答、自动报告生成等。例如,Zhang等人(2024)开发了一种通用的视觉 - 语言基础模型,用于多种生物医学任务。这些模型能够理解图像内容,并生成相应的文本描述,为医生提供更直观的诊断信息。

2)多模态数据融合:

多模态模型能够整合多种数据类型,为医生提供更全面的诊断信息。例如,在核医学中,LMMs可以综合患者的病史、成像结果和实验室数据,提供更准确的诊断和治疗建议。通过整合多源数据,多模态模型能够捕捉到单一模态数据所无法揭示的复杂关系和模式,从而提高诊断的准确性和可靠性。

  • 技术实现

多模态模型的开发涉及多种技术,包括对比学习、交叉注意力和早期融合等。对比学习通过创建一个联合的视觉 - 语言嵌入空间,使模型能够学习不同数据类型之间的映射关系;交叉注意力则通过查询、键和值向量的交互,实现不同模态数据的融合;早期融合则是将图像和文本的嵌入向量合并,输入到微调的模型中,使模型能够理解图像和文本的结合。

对比学习、交叉注意力和早期融合

03 未来展望

大语言模型和大型多模态模型的发展,预示着医疗保健领域将迎来一场深刻的变革。未来,这些模型将更加可靠,能够处理更复杂的任务,如容积成像和多通道成像模态的处理。此外,多模态智能体的发展将使AI能够自主实现复杂目标,如编写软件程序、优化医疗工作流程等。

  • 挑战与机遇

尽管前景光明,但目前仍面临一些挑战,如计算资源的需求、数据隐私和安全问题,以及模型的偏见和虚构信息等。然而,随着技术的进步和多方合作的加强,这些问题有望逐步得到解决。例如,开源基础模型的开发将降低模型开发的门槛,使更多的学术机构和医疗机构能够参与到模型的开发和应用中来。此外,数据共享和联邦学习等技术的发展,将有助于解决数据隐私和安全问题,促进医疗数据的合理利用。

  • 医生的角色

在AI技术的推动下,医生的角色将发生转变。他们将从繁重的文档工作中解放出来,更多地专注于患者的个性化治疗和复杂决策。同时,医生也需要不断学习和适应新技术,以确保能够有效地利用AI工具,为患者提供最佳的医疗服务。医生与AI的协作将更加紧密,形成一种互补的关系,共同推动医疗质量的提升。

  • 利好患者

患者将是这场医疗变革的最终受益者。AI技术的应用将使医疗服务更加高效、精准和个性化。患者将享受到更快速的诊断、更准确的治疗方案和更优质的医疗体验。此外,AI技术还将促进医疗资源的合理分配,使更多患者能够获得优质的医疗服务,缩小医疗差距。

04 结语

大语言模型和大型多模态模型的出现,为医疗保健领域带来了前所未有的机遇。它们不仅能够提高医疗效率,优化医疗服务质量,还能够为医生和患者提供更精准的诊断和治疗建议。随着技术的不断进步,我们有理由相信,AI将在医疗领域发挥越来越重要的作用,推动医疗行业迈向新的高度。医生和医疗机构应积极拥抱这些变化,充分利用AI技术,为患者带来更好的医疗体验。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值