盘点12种VLM多模态大模型,文档结构化抽取,谁最强!

img

docext提供了以下能力

  • 关键信息提取(KIE):从非结构化文档文本中提取结构化字段。
  • 视觉问答(VQA):通过问答评估对文档内容的理解。
  • 光学字符识别(OCR):衡量识别印刷文本和手写文本的准确性。
  • 文档分类:评估模型对各种文档类型的分类准确性。
  • 长文档处理:测试模型在长篇、有丰富上下文的文档上的推理能力。
  • 表格提取:基准测试从复杂表格格式中提取结构化数据。
  • 置信度评分校准:评估模型预测的可靠性和置信度。

img

模型大比拼

img

  • gemini-2.5-flash-preview-04-17综合表现最强

img

  • 关键信息提取,识别和提取发票的名称、日期、金额和其他结构化数据

  • qwen2.5-vl-72b-instruct 在信息抽取方面能打

img

  • 文档问答:主要是问基于文本的问题和需要了解文档的视觉布局和结构的问题
  • o4-mini-2025-04-16 在问答方面还是具备优势的

img

  • OCR能力:主要识别包括手写文本、数字印刷文本和带变音符号的文本。处理各种字体、布局和文档条件,同时保持文本识别的高精度。
  • gemini-2.0-flash在ORC方面还挺强

img

  • 文档分类:主要是考察文档内容、结构和分配正确类别
  • qwen2.5-vl-72b-instruct以上的模型,都能做到99%以上

img

  • 长文档处理:包括跨多个页面维护上下文、了解文档结构以及从大型文档中准确检索信息。
  • 带有推理能力的claude-3.7-sonnet (reasoning:low)占优

img

  • 表格测试稀疏、密集、结构良好的和非结构化格式(例如,没有可见网格线的表),提取表结构、单元格之间的关系以及准确提取数字和文本内容。
  • 在这方面qwen2.5-vl-72b-instruct 垫底

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在需要帮助用户了解多模态大模型的AI基础设施或架构,以及部署方面的内容。首先,我得理解用户的具体需求。用户提到了多模态大模型的基础设施、架构和部署,可能他们正在考虑如何搭建或应用这样的系统,或者想深入了解其技术细节。 接下来,我需要回顾已有的知识。多模态大模型通常处理多种类型的数据,比如文本、图像、音频等,因此架构需要支持这些数据的处理和融合。根据之前提供的引用,用户提到了LLM和VLM,也就是大型语言模型和视觉语言模型,这可能涉及到不同模态的融合技术。 然后,我应该考虑架构的关键组成部分。通常,AI大模型的基础设施包括数据处理层、模型训练层、推理层、资源管理和部署工具。对于多模态模型,可能还需要专门的模块来处理不同模态的数据,比如图像编码器、文本编码器等。此外,硬件加速如GPU和TPU的使用也是重要部分,因为大模型需要强大的计算资源。 部署方面,需要考虑模型优化技术,比如量化、剪枝和蒸馏,以减少模型大小和提高推理速度。同时,分布式训练和推理框架也是必须的,例如使用TensorFlow或PyTorch的分布式训练功能。另外,云原生部署和边缘计算可能也是用户关心的点,特别是如果应用场景需要低延迟或离线处理的话。 用户可能还关心如何确保系统的扩展性和稳定性,比如资源调度和容错机制。此外,安全性和数据隐私在多模态应用中同样重要,尤其是在处理敏感信息时。 我需要确保回答结构清晰,分点说明每个部分,并且引用提供的参考文献。比如,引用[^1]提到AI大模型在自然语言处理、计算机视觉等方面的应用,这可以支持多模态的必要性。引用[^2]提到整合语言能力和视觉认知,这与多模态架构的设计相关。 最后,生成相关问题时要涵盖架构设计、优化、应用场景和挑战,帮助用户进一步探索。需要确保问题具有针对性,能够引导用户深入理解多模态大模型的各个方面。</think>### 多模态大模型的AI基础设施与架构解析 多模态大模型(如GPT-4、CLIP等)通过整合文本、图像、音频等不同模态的数据,实现跨模态理解与生成。其基础设施和架构设计需满足**大规模计算、异构数据处理、高效训练与推理**等需求。以下是核心架构组件及部署要点: --- #### 一、核心架构设计 1. **数据预处理层** - **多模态数据融合**:设计统一的数据表示(如向量嵌入),将文本、图像、音频映射到同一语义空间,例如通过对比学习(Contrastive Learning)对齐特征[^1]。 - **分布式存储**:使用分布式文件系统(如HDFS)或云存储(如AWS S3)管理海量异构数据。 2. **模型训练层** - **混合模态建模**:采用多编码器-单解码器架构(如Transformer),例如CLIP的图文双塔结构[^2]。 - **分布式训练框架**:基于PyTorch的`FSDP`(完全分片数据并行)或TensorFlow的`TPUStrategy`,支持千亿参数规模的训练。 3. **推理服务层** - **轻量化推理引擎**:通过模型剪枝、量化(如INT8)或知识蒸馏降低部署成本。 - **多模态交互接口**:提供统一的API网关,支持文本到图像生成、视频语义检索等跨模态任务。 --- #### 二、关键技术组件 1. **硬件加速** - 使用GPU集群(如NVIDIA A100)或TPU Pods进行并行计算,结合NVLink优化通信带宽。 2. **异构计算框架** - **计算图优化**:利用ONNX Runtime或TensorRT加速模型推理。 - **跨模态对齐工具**:如FAISS库实现大规模向量相似性检索。 3. **资源管理与调度** - 基于Kubernetes的容器化部署,结合Slurm或Ray实现动态资源分配。 --- #### 三、部署实践与挑战 1. **云原生部署** - 通过AWS SageMaker、Google Vertex AI等平台实现弹性扩缩容,按需分配GPU资源。 2. **边缘计算优化** - 模型轻量化后部署至边缘设备(如手机、IoT设备),使用TensorFlow Lite或Core ML框架。 3. **安全与隐私** - 联邦学习(Federated Learning)保护数据隐私,结合同态加密(HE)实现安全推理。 --- #### 四、典型应用场景 1. **医疗诊断**:结合医学影像与文本报告生成诊断建议[^1]。 2. **智能客服**:同时理解用户的语音、文本和图像输入。 3. **工业质检**:通过视觉+传感器数据实现缺陷检测[^2]。 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值