在处理具有复杂关系结构的数据时,为增强模型的表示能力和预测性能,我们考虑特征融合+GNN。优势在于能整合多种特征信息,并通过GNN捕捉节点间的复杂关系,尤其适合医疗数据分析、情感识别等应用场景。
这结合也是当前研究的热门方向之一,双热点叠Buff,加上数据驱动优势(适用于非欧数据,覆盖场景广,有实验对比优势),关注度自然水涨船高,顶会顶刊成果已然不少。比如一区TOP刊IEEE TC上的基于GNN的时频双流网络,表现超越了SOTA。
A Graph-Based Time–Frequency Two-Stream Network for Multistep Prediction of Key Performance Indicators in Industrial Processes
方法:本文提出了一种基于GNN和时间-频率双流网络的多步预测模型,用于工业过程中的关键性能指标(KPI)预测。该方法通过多图注意力层(Multi-GAT)建模过程变量之间的动态耦合关系,并利用时间-频率双流网络分别提取时间域和频率域特征。
创新点:
-
提出了一种双流网络框架,从复杂的工业数据中提取辨别性和信息丰富的时频特征。
-
构建了多图注意力层,以建模因工业过程的时变特性而引起的过程变量之间的动态复杂耦合关系。
-
提出了最小冗余与最大相关性(MRMC)学习范式,用于有效整合时频特征,增强融合特征的表示能力。
GraphTransfer: A Generic Feature Fusion Framework for Collaborative Filtering
方法:本文提出了GraphTransfer,一个基于GNN的特征融合框架,用于协同过滤任务。它通过图特征提取模块和辅助特征提取模块分别获取图特征和辅助特征,再利用交叉融合模块将两种特征有效结合,提升推荐性能。
创新点:
-
提出了一种基于图神经网络的通用特征融合框架GraphTransfer,该框架通过精心设计的交叉融合模块,以“学会融合”的方式有效融合图特征和辅助特征。
-
设计了一个基于图卷积网络的辅助特征提取模块,有效地从用户-用户和物品-物品交互图中学习用户和物品的辅助特征。
Semantic2Graph: graph-based multi-modal feature fusion for action segmentation in videos
方法:论文提出了一种基于GNN的视频动作分割方法Semantic2Graph。该方法通过融合视觉特征、结构特征和语义特征,构建视频的图结构,并利用GNN进行节点分类,从而高效地捕捉视频中的长期依赖关系,提升动作分割的准确性。
创新点:
-
提出了一种新的图结构方法Semantic2Graph,用于视频动作分割。
-
使用图神经网络(GNNs)来融合视觉、结构和语义特征,并展示了中高层特征是进一步提升模型性能的关键。
-
在图中引入正负语义边,以增强动作分割边界的特征。
Graph-based multi-Feature fusion method for speech emotion recognition
方法:论文提出了一种GNN的语音情感识别方法,通过将多种语音特征(如MFCCs、eGeMAPs等)作为节点构建图结构,并学习多维边特征来显式建模特征之间的关系,从而实现特征融合。该方法通过图结构的特征融合提升了情感识别的准确性。
创新点:
-
首次引入多维边缘特征用于图形化的跨语料库情感识别任务,通过构建可学习的多维边缘特征,明确考虑并建模复杂多样的音频特征之间的关系。
-
通过跨特征注意力机制,融合不同类型的语音特征,捕获它们之间的信息和关系。
-
提出了一个包括音频特征生成、音频特征多维边缘特征模块和语音情感识别模块的综合框架。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。