医学图像分割,Transformer+UNet的14种融合方法

医学图像分割(Medical image segmentation)是图像分割在医学领域的重要应用,具有非常高的落地价值。

Transformer和UNet是两种常见的图像分割架构。然而,在图像分割时,Transformer由于low-level细节不足,存在定位能力不足的问题;而UNet则在显式建模长期依赖关系方面局限性大。

【Transformer+UNet】的融合方式,恰恰能充分发挥Transformer和UNet在医学图像分割方面的优势,弥补各自不足,产生显著的效果。因此,如果想发论文,这个方向依旧是个不错的选择。

沃的顶会整理了【Transformer结合UNet】应用于医学图像分割的14种创新方案,论文和代码都有。

1. MicFormer 

标题:Multimodal Information Interaction for Medical Image Segmentation

方法:MicFormer 的架构基于 Swin-Unet 深度学习分段网络,并通过并行双流架构的结合进一步增强。MicFormer 包含一个 Transformer 架构以及一个具有 U 形特征提取功能的并行子网络,从而促进特征融合,并通过利用可扩展交叉注意机制实现模态之间的连续模块交换。在此框架内,Cross Transformer 模块采用可扩展采样来计算两种模态之间的结构关系,从而重塑一种模态的结构信息,以与 Swin Transformer 同一局部窗口内两种模态的相应结构保持一致。Cross Transformer 模块用于维护模态的原始

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值