背景介绍
在快速变化的金融市场中,实时分析和决策变得至关重要。传统的单一模型往往无法满足这种需求,因此,我们引入了Multi-Agent系统,每个Agent都有特定的角色和任务,通过协作完成整体目标。
系统架构
我们设计了以下四个智能Agent:
- 数据分析Agent(Data Analyst Agent)
-
职责: 实时监控和分析市场数据,识别趋势,预测市场走势。
-
特点: 擅长金融市场的数据统计和机器学习,是交易决策的重要基础。
- 交易策略开发Agent(Trading Strategy Developer Agent)
-
职责: 基于数据分析Agent的洞察,开发和测试交易策略。
-
特点: 深入理解金融市场和定量分析,致力于制定最有利可图且风险最低的策略。
- 交易顾问Agent(Trade Advisor Agent)
-
• 职责: 根据批准的交易策略,建议最佳的交易执行方案。
-
• 特点: 专注于交易的时间、价格和执行细节,确保交易高效且符合策略。
- 风险管理Agent(Risk Advisor Agent)
-
职责: 评估潜在交易的风险,提供详细的风险分析和缓解建议。
-
特点: 精通风险评估模型和市场动态,确保交易活动符合公司的风险容忍度。
此外,我们还引入了一个管理者(Manager),由 ChatGPT o1 驱动,负责协调所有Agent的工作,确保任务的高效分配和协作。
工作流程
整个系统的工作流程如下:
-
数据收集与分析:数据分析Agent持续监控选定股票(例如 AAPL)的市场数据,利用统计模型和机器学习算法,识别市场趋势并预测未来走势。
-
策略开发:交易策略开发Agent基于数据分析Agent的洞察,以及用户定义的风险容忍度和交易偏好,开发和优化交易策略。
-
执行计划:交易顾问Agent分析批准的策略,考虑当前市场条件,制定最佳的交易执行计划,建议何时以及如何执行交易。
-
风险评估:风险管理Agent评估拟议交易的潜在风险,提供详细的风险分析报告,并建议风险缓解措施。
-
任务协调:管理者Agent协调上述所有步骤,确保各Agent之间的信息流畅,任务有效衔接。
代码实现
下面,我们将展示如何使用 Python 和相关库来实现这个Multi-Agent系统。
环境配置
首先,确保安装必要的库:
!pip install crewai==0.28.8 crewai_tools==0.1.6 langchain_community==0.0.29
导入库和设置 API 密钥
import os from crewai import Agent, Task, Crew from crewai_tools import ScrapeWebsiteTool, SerperDevTool from langchain_openai import ChatOpenAI # 获取 API 密钥(假设已存储在环境变量中) openai_api_key = os.getenv("OPENAI_API_KEY") os.environ["OPENAI_MODEL_NAME"] = 'gpt-3.5-turbo' # 或者 'gpt-4',取决于您的权限 os.environ["SERPER_API_KEY"] = os.getenv("SERPER_API_KEY")
初始化工具
search_tool = SerperDevTool() scrape_tool = ScrapeWebsiteTool()
创建智能Agent
1. 数据分析Agent
data_analyst_agent = Agent( role="Data Analyst", goal="Monitor and analyze market data in real-time to identify trends and predict market movements.", backstory="Specializing in financial markets, this agent uses statistical modeling and machine learning to provide crucial insights.", verbose=True, allow_delegation=True, tools=[scrape_tool, search_tool] )
2. 交易策略开发Agent
trading_strategy_agent = Agent( role="Trading Strategy Developer", goal="Develop and test various trading strategies based on insights from the Data Analyst Agent.", backstory="Equipped with a deep understanding of financial markets and quantitative analysis, this agent devises and refines trading strategies.", verbose=True, allow_delegation=True, tools=[scrape_tool, search_tool] )
3. 交易顾问Agent
execution_agent = Agent( role="Trade Advisor", goal="Suggest optimal trade execution strategies based on approved trading strategies.", backstory="This agent specializes in analyzing the timing, price, and logistical details of potential trades.", verbose=True, allow_delegation=True, tools=[scrape_tool, search_tool] )
4. 风险管理Agent
risk_management_agent = Agent( role="Risk Advisor", goal="Evaluate and provide insights on the risks associated with potential trading activities.", backstory="Armed with a deep understanding of risk assessment models and market dynamics, this agent scrutinizes the potential risks of proposed trades.", verbose=True, allow_delegation=True, tools=[scrape_tool, search_tool] )
创建任务
1. 数据分析任务
data_analysis_task = Task( description=( "Continuously monitor and analyze market data for the selected stock ({stock_selection}). " "Use statistical modeling and machine learning to identify trends and predict market movements." ), expected_output=( "Insights and alerts about significant market opportunities or threats for {stock_selection}." ), agent=data_analyst_agent, )
2. 策略开发任务
strategy_development_task = Task( description=( "Develop and refine trading strategies based on the insights from the Data Analyst and user-defined risk tolerance ({risk_tolerance}). " "Consider trading preferences ({trading_strategy_preference})." ), expected_output=( "A set of potential trading strategies for {stock_selection} that align with the user's risk tolerance." ), agent=trading_strategy_agent, )
3. 执行计划任务
execution_planning_task = Task( description=( "Analyze approved trading strategies to determine the best execution methods for {stock_selection}, " "considering current market conditions and optimal pricing." ), expected_output=( "Detailed execution plans suggesting how and when to execute trades for {stock_selection}." ), agent=execution_agent, )
4. 风险评估任务
risk_assessment_task = Task( description=( "Evaluate the risks associated with the proposed trading strategies and execution plans for {stock_selection}. " "Provide a detailed analysis of potential risks and suggest mitigation strategies." ), expected_output=( "A comprehensive risk analysis report detailing potential risks and mitigation recommendations for {stock_selection}." ), agent=risk_management_agent, )
创建管理者和组建团队
financial_trading_crew = Crew( agents=[ data_analyst_agent, trading_strategy_agent, execution_agent, risk_management_agent ], tasks=[ data_analysis_task, strategy_development_task, execution_planning_task, risk_assessment_task ], manager_llm=ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7), process=Process.hierarchical, verbose=True )
运行系统
我们可以提供一些输入参数来启动流程:
financial_trading_inputs = { 'stock_selection': 'AAPL', 'initial_capital': '100000', 'risk_tolerance': 'Medium', 'trading_strategy_preference': 'Day Trading', 'news_impact_consideration': True }
启动系统:
result = financial_trading_crew.kickoff(inputs=financial_trading_inputs)
显示最终结果:
from IPython.display import Markdown Markdown(result)
回测演示
在运行上述代码后,各个Agent将协同工作,完成对 AAPL 股票的实时数据分析、策略开发、执行计划和风险评估。最终结果将以 Markdown 格式呈现,包括对市场的洞察、建议的交易策略、执行计划和风险分析报告。欢迎使用回测平台观察交易效果。
挑战与解决方案
1. 数据质量和可用性
-
挑战: 市场数据可能不完整或存在延迟。
-
解决方案: 使用多个可靠的数据源,并实现数据清洗和验证机制。
2. 实时处理能力
-
挑战: 需要快速处理大量数据,实时生成洞察。
-
解决方案: 优化算法,利用并行处理和高性能计算资源。
3. 风险管理复杂性
-
挑战: 市场风险多变,难以全面评估。
-
解决方案: 引入高级风险评估模型,持续更新风险参数。
4. Agent协调
-
挑战: 多个Agent之间的通信和协作可能出现问题。
-
解决方案: 使用强大的管理者Agent(ChatGPT o1)来协调任务,确保信息流畅。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。