它开源了!端到端自动驾驶多模态模型OpenEMMA

随着多模态大语言模型(MLLMs)的出现,它们在许多现实应用中都带来了巨大影响,特别是在自动驾驶领域。因为它们能够处理复杂的视觉数据并对驾驶场景进行深入的推理,这为端到端自动驾驶系统开创了新局面。不过,目前开发端到端自动驾驶模型的进展较为缓慢,原因是现有的微调方法需要大量资源,包括强大的计算能力、大规模数据集以及可观的资金投入。

受近期推理计算技术进步的启发,德克萨斯农工大学提出了OpenEMMA,一个基于 MLLMs 的开源端到端框架。通过引入“思维链”(Chain-of-Thought)推理过程,OpenEMMA 相较于基线模型表现出显著提升。**OpenEMMA是《**Waymo 的端到端自动驾驶多模态模型 (EMMA)》的开源实现 ,为自动驾驶汽车的运动规划提供了端到端框架。同时,它在各种复杂的驾驶场景中表现出了高效性、适应性和稳定性,为自动驾驶提供了一种更高效、更可靠的解决方案。(链接在文章底部)

01 技术原理

EMMA 由 Google 开发的多模态大语言模型 Gemini 提供支持,它采用统一的端到端训练模型,直接从传感器数据生成自动驾驶车辆的未来轨迹。为了适应自动驾驶的需求,EMMA 专门进行了训练和微调,并充分利用 Gemini 广博的世界知识,更好地理解道路上的复杂场景。

为了解决像 EMMA 这样的闭源模型的局限性,旨在使用公开可用的工具和模型复制 EMMA 的核心功能。OpenEMMA 的目标是将这些技术进步民主化,为更广泛的研究和开发提供平台。与 EMMA 类似,OpenEMMA 以前置摄像头图像和车辆历史状态的文本输入为基础,将驾驶任务设计为视觉问答(Visual Question Answering, VQA)问题,同时采用思维链推理指导模型生成关于关键目标、行为洞察和驾驶决策的详细描述。这些决策由模型直接推断,为路径点生成提供必要的上下文信息。

为应对多模态大模型(MLLMs)在目标检测任务中的已知局限性,OpenEMMA 集成了一版专为自动驾驶场景优化的 YOLO 模型,用于 3D 边界框预测,从而显著提高检测精度。此外,借助多模态大模型的现有世界知识,OpenEMMA 能够为场景理解等感知任务生成可解释的、易于人类阅读的输出,进一步提升透明度和可用性。

02 演示效果

OpenEMMA在低光夜间条件下的性能。虽然OpenEMMA在这种具有挑战性的环境中偶尔可能会错过某些物体的检测,但它成功识别并检测到了对安全导航至关重要的关键物体。此外,它准确理解自车正在向左车道转换,并生成了精准的轨迹规划以有效适应这一操作。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 自动驾驶中的多模态模型 #### 架构概述 在自动驾驶领域,多模态模型通过集成来自不同传感器的数据来提高决策的准确性。这些数据源通常包括摄像头图像、激光雷达点云以及毫米波雷达信号等。为了有效处理如此丰富的输入信息,典型的多模态模型架构会先分别对每种类型的感知数据进行预处理和特征提取[^1]。 ```mermaid graph LR; A[多模态数据] --> B(模态融合); C[视觉数据] --> B; D[LIDAR 数据] --> B; E[RADAR 数据] --> B; B --> F[多模态模型]; F --> G[任务特定头部]; G --> H[输出] ``` #### 技术实现细节 具体来说,在接收到来自多个传感器的不同形式的数据之后,系统会对它们各自执行专门设计好的编码器操作以获取低级表示;随后利用注意力机制或其他先进的神经网络组件完成跨模态间的交互学习过程,从而形成高层次抽象特征表达。这一阶段结束后所得到的结果会被送入下游的任务专用模块中进一步加工并最终产生用于控制车辆行为的动作指令或路径规划建议[^2]。 #### 应用实例与发展现状 目前国内外多家企业和研究机构都在积极探索基于此类框架构建更加强大的无人驾驶解决方案。例如,在某些高级辅助驾驶系统(ADAS)产品里已经开始采用类似的思路来进行环境建模与障碍物检测等工作。与此同时,随着硬件性能不断提升加上软件算法持续优化迭代,可以预见未来几年内该方向将会取得更多突破性成果,并逐渐走向商业化落地阶段[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值