CIKM 22 | 用于金融时间序列预测的异构图神经网络

Content

这篇论文提出了一种名为时态和异构图神经网络(THGNN)的新方法,用于预测金融市场中的股票价格变动。该方法通过生成基于历史价格数据的公司关系图,并利用变换器编码器和异构图注意力网络来捕捉价格动态和公司间的复杂关系。通过在美国和中国股市的广泛实验,THGNN在预测准确性和投资组合回报方面均优于现有模型。此外,该方法已在实际量化算法交易系统中部署,表现出显著优于其他基线方法的累积投资组合回报。

1. 引言 (Introduction)

股票市场预测是金融领域的核心问题之一,涉及复杂的数据分析和模式识别。尽管有效市场假说认为股票价格反映了所有可用信息,但股票价格的波动性使得预测其变动变得困难。近年来,深度学习在股票价格预测方面取得了进展,研究者通过引入额外的信息源,如技术指标、金融状况、新闻和社交媒体帖子等,来提高预测性能。然而,传统方法通常将时间序列视为独立同分布,忽略了股票间的内在关联。为此,研究者开始利用知识图谱来表示实体间的内部关系,并采用图学习进行价格运动预测。尽管这些方法有效,但构建实体间关系图谱存在挑战,因为这些关系图谱通常是动态变化的,且现有的基于手工编辑或自然语言处理技术构建的关系图谱存在资源消耗大和提取准确度低的问题。为了解决这些挑战,提出了一种基于时态和异构图神经网络的方法,用于学习金融时间序列中价格变动之间的动态关系。该方法首先根据历史价格生成公司关系图,然后利用变换器编码器对价格运动信息进行编码,接着提出异构图注意力网络来优化金融时间序列数据的嵌入,并推断目标运动的概率。在美国和中国股市的广泛实验表明,该方法与现有技术相比具有优越的性能。此外,该方法已在实际量化算法交易系统中部署,所获得的投资组合回报显著优于其他基线方法。

2. 相关工作 (Related Works)

在传统方法中,研究者通过手动构建各种因素作为模型输入来预测股票价格,例如市场信号、股票基本面和技术指标。此外,大量现有方法采用循环神经网络及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来学习历史信息的序列潜在特征,并将其用于下游预测任务。然而,这些方法通常独立处理每只股票的市场信号,忽略了股票之间的内在关系。

在基于图的学习领域,研究者已经证明股票价格运动不仅与自身历史价格相关,还与其相关股票相连。现有的工作通常使用知识图谱来存储和表示这些关系,并引入图神经网络(GNN)来有效学习图结构数据。例如,一些研究将实体的供应链关系建模为知识图谱,并使用图卷积网络来预测股票运动。其他研究则利用社交媒体文本和公司关联构建的连接,并应用注意力图神经网络。尽管如此,这些方法构建的图通常受到手工编辑或自然语言处理技术的限制,这些技术在资源标记和提取准确性方面存在不足。实际的公司关系图是频繁演变的,并且公司关系图也是异构的,意味着实体间存在多种关系类型。因此,现有方法无法充分利用现实生活中公司关系图的全部信息。

3. 提出的方法 (The Proposed Method)

3.1 问题定义

与使用手工标注或自然语言处理技术构建静态同构图的传统基于图的方法不同,该模型将公司关系图表示为由历史价格序列自动生成的时态异构图集合。在图中,节点表示每只股票,边表示它们在序列中的关系。时态图由时间标记的边和节点组成。每种类型的边在公司关系图中可能与多个时间标记的边相关联,且在不同交易日上节点和边的出现可能不同。

定义 3.1. 时态和关系出现。 在时态公司关系图中,边与一系列时态出现相关联,表示边在公司关系图中不同交易日的出现。每种关系出现都与一系列时态出现相关联,表示边在不同关系中的出现。

定义 3.2. 时态和异构图。 时态和异构图由一组时态节点和一系列时态边集合组成,其中每组时态边表示特定关系的所有边。

定义 3.3. 时态和异构图邻域。 给定时态节点,其邻域定义为满足特定条件的节点集合。

最终,股票运动预测问题被定义为:输入上市公司的历史价格序列,然后使用这些序列生成时态异构公司关系图,输出每只股票价格运动的概率。

3.2 股票相关图生成

介绍了如何构建时态和异构图。通过直接基于市场趋势信号计算股票历史市场信号之间的相关系数矩阵来获得相关矩阵,然后根据相关矩阵的每个元素值确定公司之间的关系。关系可以是正向的(相关系数大于阈值)或负向的(相关系数小于阈值)。为了减少噪声,只连接绝对值大于阈值的边,其余边被视为不连接。因此,生成了公司关系图的边。将公司间关系图建模为具有两种关系的异构图,并为模型输入生成具有多个时间戳的时态和异构公司关系图。

3.3 历史价格编码

定义了价格序列特征,并使用线性变换和位置编码对交易特征进行编码,以获得输入张量。然后,提出了多头注意力机制的变换器对每只股票在每天的价格序列进行编码。编码器输出用于下游任务的张量。

3.4 时态图注意力机制

给定历史序列编码器输出和时态关系图,提出了图注意力机制来处理序列和异构输入。通过两阶段时态注意力机制来聚合来自图结构和时间序列的信息。每个关系类型的消息聚合如下:

其中 表示在交易日 tt上时态图注意力层的输出, 表示输出投影矩阵,表示头的数量,每个头的时态图注意力层 计算如下:

3.5 异构图注意力机制

在两阶段注意力机制后,已经从不同类型的邻居获得了信息。然后,提出了异构图注意力网络来学习关系图中不同关系的信息。定义消息源为三种类型的嵌入,即自身的消息,正邻居的消息 和负邻居的消息。通过注意力机制自适应地生成不同关系的重要性权重。

(πpn,πnn,πnr)=HGA(Htr,Hpn,Hnn)

其中,HGA表示异构图注意力函数。首先使用三个多层感知机(MLP)转换这三组嵌入,然后使用异构图注意力向量 q 来衡量每个嵌入的重要性。最后,计算每种关系的贡献,并得到最终嵌入 Z。

3.6 优化目标

实现了目标函数的实现。将股票运动预测任务建模为半监督节点分类问题。选择部分股票作为标记节点,并使用一层MLP作为分类器来获取标记节点的分类结果。然后,使用二元交叉熵来计算目标函数。

在这里插入图片描述

其中 Yl表示标记节点集合,Yi和Zi分别表示标记节点 i 的标签和嵌入,σ 表示 Sigmoid 激活函数,W和 b是 MLP 的参数。在标记数据的指导下,使用 Adam 优化器更新所提出方法的参数。

4. 实验 (Experiments)

4.1 实验设置

  • 数据集:实验使用了美国和中国股市的数据,包括标准普尔500指数(S&P 500)和中国沪深300指数(CSI 300)的历史价格数据,时间跨度为2016年至2021年。此外,还构建了公司关系图,这些图基于过去20个交易日内股票价格变动的相关系数矩阵生成。

  • 参数设置:模型的时态图包含20个交易日的公司关系。在图生成过程中,边的生成阈值设置为0.6。使用过去20个交易日的历史价格数据作为输入特征,编码层的特征维度和输入维度均设置为128,隐藏层维度为512,值维度为128,注意力头数为8。

  • 交易协议:基于每日买卖持有策略评估股票运动预测方法的性能。在测试期间的每个交易日结束时,使用预测模型得到每只股票的预期收益率排名。在下一个交易日开始时,卖出前一日购买的股票,并购买预期收益最高的股票。

在这里插入图片描述

4.2 金融预测

  • 性能评估:使用预测准确性(ACC)、年化收益率(ARR)、年化波动率(AV)、最大回撤(MDD)、年化夏普比率(ASR)、卡马尔比率(CR)和信息比率(IR)等七个指标来评估不同模型的性能。实验结果表明,THGNN模型在所有基线方法中表现最佳,证明了时态和异构图神经网络在金融时间序列预测中的优越性。

4.3 消融研究

  • 消融实验:通过移除模型中的历史价格编码层、时态图注意力层和异构图注意力机制,评估这些组件对模型性能的影响。实验结果表明,这些组件对于模型的整体性能至关重要。

4.4 投资组合性能

  • 投资策略评估:使用年化收益率(ARR)、年化夏普比率(ASR)、卡马尔比率(CR)和信息比率(IR)等指标评估投资组合策略的性能。THGNN模型在构建盈利投资组合策略方面表现出色,优于其他基线方法。

4.5 参数敏感性

  • 参数影响:研究了嵌入维度、编码输出维度、注意力向量维度和注意力头数等参数对模型性能的影响。实验结果揭示了不同参数对模型性能的具体影响,为模型的参数调整提供了指导。

4.6 图神经网络的可解释性

  • 注意力权重可视化:通过可视化模型预测过程中的注意力权重,探索了模型的可解释性。实验结果表明,节点的度和日收益率波动对注意力权重有显著影响,证明了模型在捕捉公司间动态关系方面的有效性。

4.7 系统实现

  • 模型部署:介绍了模型的实现细节和部署的桌面应用程序。THGNN模型每天重新训练一次,使用小批量梯度下降优化。模型使用PyTorch实现,并部署在Python和Java环境中。此外,使用分布式Scrapy获取历史股票数据,并使用Neo4j作为图数据库存储关系图。应用程序界面展示了基于THGNN策略持有的股票列表、价格变动曲线和相关公司的可视化。

5. 结论和讨论 (Conclusion and Discussion)

本文确认了所提出的时态和异构图神经网络(THGNN)模型在金融时间序列预测中的有效性,特别是在动态异构图结构的应用上,相较于静态或同构图结构的方法,能够获得更有利可图的投资组合策略。论文指出,这是首次将公司间关系建模为动态异构图,并应用于金融时间序列预测问题,为基于图的金融技术研究和创新提供了新的方向。同时,论文指出在生成实际公司关系图方面的工作还有改进空间,并提出未来的研究方向将集中在改善公司关系的建模,以帮助预测模型获得更准确的训练输入图数据。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值