检索增强生成(RAG)的最新发展:一文汇总11种新型RAG算法!

引言

随着人工智能的快速发展,检索增强生成(Retrieval-Augmented Generation,RAG)技术正在经历前所未有的演变。RAG技术通过将外部知识融入大型语言模型(LLM)的生成过程,极大地提高了AI系统的事实准确性和可靠性。如今,RAG正向更具智能性和自主性的方向发展,能够处理像超图这样的复杂结构,并适应各种专业领域的需求。

本文将介绍11种最新的RAG类型,展示这一技术领域的创新前沿。

一张图省流版:

img

最新RAG技术概览

1. InstructRAG:基于指令图的任务规划

论文InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning

InstructRAG将RAG与多代理框架相结合,使用基于图的结构来组织和执行任务。它包含两个关键创新:

  • 强化学习代理:用于扩展任务覆盖范围
  • 元学习代理:提高系统的泛化能力

这种方法使AI系统能够更有效地进行复杂任务规划,同时保持知识的准确性。

2. CoRAG:协作式检索增强生成

论文CoRAG: Collaborative Retrieval-Augmented Generation

CoRAG框架将RAG扩展到协作设置中,允许多个客户端使用共享的段落存储来训练同一个模型。这种方法的优势包括:

  • 更高效的知识共享
  • 减少重复训练
  • 提高整体系统的学习效率

在需要多方协作的场景中,如企业内部的知识管理系统,CoRAG展现出巨大潜力。

3. ReaRAG:迭代检索增强推理

论文ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation

ReaRAG采用"思考-行动-观察"循环,在推理过程中动态决定是继续检索信息还是给出最终答案。这种方法的主要特点是:

  • 减少不必要的推理步骤
  • 降低错误率
  • 提高最终答案的准确性

在需要深度推理的复杂查询中,ReaRAG的表现尤为出色。

4. MCTS-RAG:蒙特卡洛树搜索增强生成

论文MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search

MCTS-RAG将蒙特卡洛树搜索与RAG结合,帮助小型语言模型处理复杂、知识密集型任务。这种创新的组合带来了:

  • 更高效的搜索策略
  • 提高知识挖掘能力
  • 使小型模型具备处理复杂任务的能力

MCTS-RAG为资源受限环境中的AI应用开辟了新的可能性。

5. Typed-RAG:类型感知的多方面分解

论文Typed-RAG: Type-aware Multi-Aspect Decomposition for Non-Factoid Question Answering

Typed-RAG专注于改进开放式问题的回答质量,通过:

  • 识别问题类型(辩论、个人经验或比较)
  • 将复杂问题分解为更简单的部分
  • 针对不同类型的问题采用不同的检索和生成策略

这种方法在处理非事实型问题时表现出明显优势,提供更加深入和多维度的回答。

6. MADAM-RAG:处理冲突证据的多代理系统

论文Retrieval-Augmented Generation with Conflicting Evidence

MADAM-RAG是一个多代理系统,其中多个模型通过多轮讨论来达成共识,并由一个聚合器过滤噪音和错误信息。这种方法的优势包括:

  • 提高处理矛盾信息的能力
  • 减少误导性内容
  • 生成更加平衡和准确的回答

在需要处理多个可能存在冲突的信息源的场景中,MADAM-RAG表现出色。

7. HM-RAG:层次化多代理多模态RAG

论文HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation

HM-RAG是一个层次化多代理RAG框架,使用三个专门的代理:

  • 查询分割代理:负责分解复杂查询
  • 多模态检索代理:跨文本、图形和网络等多种数据类型进行检索
  • 合并与优化代理:整合不同来源的信息并优化最终答案

这种架构能够处理跨多种媒体类型的复杂查询,提供更全面的回答。

8. CDF-RAG:因果动态反馈的自适应RAG

论文CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation

CDF-RAG利用因果图进行多跳因果推理,具有以下特点:

  • 持续优化查询
  • 根据因果路径验证响应
  • 提高模型对因果关系的理解和推理能力

这种方法在需要深入理解"为什么"和"如何"的问题时表现尤为出色。

9. NodeRAG:基于异构图的检索增强生成

论文NodeRAG

NodeRAG使用精心设计的异构图结构,专注于图设计以确保图算法的平滑集成。其主要特点包括:

  • 比GraphRAG和LightRAG更高效
  • 在多跳和开放式问答基准测试中表现卓越
  • 更好地捕捉知识之间的关系

NodeRAG为处理复杂知识网络提供了新的解决方案。

10. HeteRAG:异构检索增强生成框架

论文HeteRAG

HeteRAG框架解耦了知识块表示,具有以下创新点:

  • 使用多粒度视图进行检索
  • 采用简洁的知识块进行生成
  • 结合自适应提示调优

这种方法提高了知识检索的精确度和生成内容的质量。

11. Hyper-RAG:基于超图的检索增强生成

论文Hyper-RAG

Hyper-RAG是一种基于超图的RAG方法,通过捕捉领域特定知识中的配对和复杂关系,实现了:

  • 提高事实准确性
  • 减少幻觉生成
  • 特别适用于医疗等高风险领域

其轻量级版本还将检索速度提高了一倍,在保持准确性的同时提升了效率。

RAG技术的未来发展方向

随着这些新型RAG技术的出现,我们可以预见几个明显的发展趋势:

  1. 多代理协作:未来的RAG系统将越来越依赖多个专门的代理相互协作,各司其职
  2. 图结构与超图:复杂的知识结构如图和超图将成为RAG系统的核心组成部分
  3. 因果推理:对因果关系的理解和推理将成为RAG系统的重要能力
  4. 多模态整合:跨文本、图像、视频等多种模态的知识整合将变得越来越重要
  5. 自适应能力:RAG系统将能够根据任务性质和难度自动调整其检索和生成策略

结论

RAG技术正在快速演变,从简单的知识检索增强到复杂的多代理系统、图结构导航和因果推理。这11种新型RAG技术代表了当前研究的前沿,它们不仅提高了AI系统的事实准确性,还扩展了这些系统处理复杂任务的能力范围。

随着技术的不断进步,我们可以期待RAG系统在准确性、效率和适应性方面取得更大的突破,为人工智能的发展开辟新的可能性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 检索增强生成RAG)技术发展历史 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了信息检索和自然语言生成的技术,旨在提高对话系统和其他文本生成系统的性能。以下是关于这项技术发展的几个重要阶段: #### 初期探索与概念形成 早期的研究主要集中在如何有效地将外部知识融入到神经网络架构中去。传统的基于序列到序列(seq2seq)的方法虽然能够处理一定长度的上下文,但在面对大规模开放领域的问题时显得力不从心。为了克服这些局限性,研究者们开始尝试引入显式的记忆机制或利用预训练的语言模型作为编码器的一部分。 #### Advanced RAG 的提出与发展 随着需求的增长和技术的进步,在基础版Naive RAG的基础上进一步提出了Advanced RAG框架[^1]。这一版本不仅强化了原有的功能模块,还特别加入了Pre-Retrieval以及Post-Retrieval组件,使得整个流程更加完善高效。这标志着RAG体系结构的一个重要里程碑,因为它显著提升了跨文档推理能力,并改善了对于复杂查询的支持效果。 #### 实际应用场景中的成熟化 随着时间推移,越来越多的企业级应用采纳并优化了这种模式。例如,在构建大型企业内部的知识库问答平台或是客服机器人方面,RAG展现出了强大的优势[^2]。它允许开发者借助于成熟的搜索引擎技术和先进的机器学习算法,实现精准的内容匹配和服务响应,从而为企业带来更高的运营效率和更好的用户体验。 ```python # Python代码示例:模拟简单的RAG工作原理 def rag_based_qa(query): retrieved_docs = retrieve_relevant_documents(query) generated_answer = generate_response(retrieved_docs) return post_process(generated_answer) def retrieve_relevant_documents(query): # 使用IR方法获取相关文档列表 pass def generate_response(docs): # 基于给定文档集合成答案 pass def post_process(answer): # 对生成的回答做最后润色调整 pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值