本文介绍了一种新的用于医疗的多模态多任务机器学习框架。医疗多模态多任务机器学习框架旨在通过集成各种数据模态(包括表格、时间序列、语言和视觉数据)的学习来统一协调现代医学,用于多个任务,如监督二进制/多类分类、回归和无监督聚类。该框架设计为可解释、可适应和可扩展,适用于促进人工智能驱动的医疗机构的发展。
作者强调了在医疗中集成人工智能和机器学习的重要性,强调需要一个能够同时处理不同数据模态和多个医疗任务的综合框架。他们认为,多任务学习在自然语言处理和计算机视觉方面取得了重大进展,可以扩展到医疗保健领域,如心脏病学、精神病学、肿瘤学和放射学。
医疗多模态多任务机器学习框架由几个组件组成,包括特定于模态的嵌入提取、共享任务学习和任务特定网络。该框架使用公开可用的预训练模型(如ClinicalBERT和DenseNet)来提取特定于模态的嵌入,然后将其集成到共享任务学习模块中。共享任务学习模块采用新颖的注意力机制促进跨任务学习,使框架能够学习任务依赖关系,提高整体性能。
作者通过将医疗多模态多任务机器学习框架应用于包含来自6485名患者的34,537个样本的大型验证多模态数据集来证明其有效性。该数据集集成了四种不同类型的模态输入(表格、时间序列、语言和视觉)和11个数据源。结果表明,医疗多模态多任务机器学习框架始终优于传统的单任务模型,在包括40种不同疾病诊断、3个医院运营预测和1个患者表型任务的44项医疗任务中平均提高11.6%。
本文还引入了一种新的任务交互衡量(TIM)得分,该得分通过量化学习附加任务组合的价值来提供可解释性。任务交互衡量(TIM)得分有助于确定应该一起训练以提高性能的任务,并提供对不同医疗领域如何相互作用和联系的深刻见解。
总的来说,医疗多模态多任务机器学习框架提供了一个统一的、可适应的、可扩展的解决方案,用于集成医疗中的多模态数据和多任务学习,从而有可能给医疗行业带来巨大的变革。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。