【一文读懂】RAG的重要组成-向量数据库

向量数据库(Vector Database),看似莫测高深的一个名词,在众多AI技术文章中经常出现,那向量数据库究竟是个什么鬼呢?本篇深入浅出,为各位同学介绍一下它的相关知识。

01.什么是向量

首先,向量数据库中保存的就是向量数据了,那什么是向量呢?向量是一个数学概念,它可以表示为一个包含多个数值的列表,这些数值(也称为分量)按照一定顺序排列。在不同的上下文中,向量可以用来表示不同的事物。比如在日常生活中向量可以这样表示:

  • 假设你想描述从家到学校的路线,你可以创建一个向量 [3, 2]。这里,3 表示向东走3个单位,2 表示向北走2个单位。

  • 在3D建模中,物体的每个顶点位置都是通过三维空间中的向量来定义的。例如,一个点在3D空间中的位置可以表示为向量 [x, y, z]。

  • 力是一个有大小和方向的量,可以用向量表示。例如,一个大小为10牛顿、方向向上的力可以表示为向量 [10, 1]。

向量的例子比比皆是,不难理解,覆盖了我们生活中的方方面面。向量表中每个分量的意义,可以根据不同的实际用途而自由定义。

02.AI中的向量

在AI领域中,将文本数据转换成向量的过程就像把书里的文字变成一种特殊的密码,让计算机能够读懂和处理,以下是几种常用的向量数据表示方法:

1. 词袋模型(Bag of Words, BoW)

词袋模型是一种简单的方法,它把文本看作一个单词的集合,不考虑单词的顺序。我们会先确定一个词汇表,统计每个单词在文本中出现的次数。

例子:

假设我们有两个句子:

句子1: “我喜欢猫”

句子2: “我喜欢狗”

我们先建立一个词汇表:[“我”, “喜欢”, “猫”, “狗”]

然后我们可以将每个句子表示为一个向量:

句子1: [1, 1, 1, 0] ("我"出现1次,"喜欢"出现1次,"猫"出现1次,"狗"出现0次)

句子2: [1, 1, 0, 1] ("我"出现1次,"喜欢"出现1次,"猫"出现0次,"狗"出现1次)

2. TF-IDF(Term Frequency-Inverse Document Frequency)

TF-IDF是对词袋模型的一个改进,它不仅考虑单词在单个文档中的频率,还考虑单词在整个语料库中的重要性。它对于常见的单词(如“的”、“是”)会赋予较低的权重。

如果继续使用上面的句子,我们计算每个单词的TF-IDF值,然后用向量表示。这样可以更好地区分文本之间的差异。

3. 词嵌入(Word Embedding)

词嵌入是一种将单词映射到高维空间中的方法,使得语义相似的单词在向量空间中也相近。常用的词嵌入模型有Word2Vec和GloVe。

例子:

在词嵌入中,单词“猫”和“狗”可能会被表示为如下向量:

“猫”: [0.5, 0.2, 0.1]

“狗”: [0.4, 0.2, 0.3]

在这个向量空间中,尽管具体数字不同,但“猫”和“狗”的向量相对更近,因为它们都是动物。

4. 句子或文档嵌入

除了单词,完整的句子或文档也可以被转化为向量,常用的模型有BERT等。它们可以理解上下文,使得同义句的向量更接近。

例子:

句子“我爱猫”和“我喜欢猫”可能在模型中被表示为:

“我爱猫”: [0.6, 0.5, 0.1]

“我喜欢猫”: [0.7, 0.4, 0.2]

尽管这两个句子的词不同,但它们的向量相似度较高,反映出它们的语义相近。

通过这个过程,原本复杂的文本数据就被转换成了计算机可以理解和处理的向量形式。这些向量可以被用来训练机器学习模型,让模型学会识别文本中的模式和关系,比如判断一个评论是正面的还是负面的,或者把一种语言翻译成另一种语言。

03.向量数据库的作用

我们把上述的向量数据放入数据库中,就形成了向量数据库。那向量数据库在RAG技术中能起到什么作用呢?其实也不难理解,向量数据库在大模型RAG(Retrieval-Augmented Generation,检索增强生成)技术中,可以通俗地理解为一个高效的“知识仓库”和“搜索引擎”,它帮助大语言模型快速找到并使用相关信息。

下面用一个例子来说明这个过程:

假如你是一位图书管理员,你的图书馆里有成千上万本书。每天,有人来问你各种问题,你需要从这些书中找到答案。但是,如果每回答一个问题,你都要一本一本地翻阅这些书,那效率就太低了。这就是传统大型语言模型可能面临的问题。

现在,我们有了向量数据库这个得力助手,它通过简易的流程,让你在查找资料时的效率得到显著提升。

1. 整理书架:首先,你把每本书的内容转换成一种特殊的“编码”(即向量化),然后根据这些编码整理书架,这样你就可以快速找到相关的书籍。在向量数据库中,这个过程称为“索引”。

2. 快速检索:当有人问你问题时,你无需去翻阅整本书,而是根据问题的内容,快速找到包含答案的书籍。向量数据库通过比较问题的“编码”和书籍的“编码”,迅速找出最相关的几本书。

3. 智能组合:找到相关书籍后,你不是简单地把整本书的内容都给对方,而是挑选最相关的一部分内容,结合问题,给出一个清晰、准确的答案。在RAG技术中,这就是将检索到的信息与问题结合,生成答案的过程。

假设有人来问:“中国的首都是哪?”你不需要去翻阅关于中国的整本书,而是快速在向量数据库中找到与“中国”和“首都”这两个关键词最相关的信息片段,然后告诉他们答案是“北京”。

04.向量数据库与嵌入模型的关系

上篇提到了另一重要工具 Embedding Model(嵌入模型),它与向量数据库经常在同一个RAG引擎中同时出现,并且同时工作,它们之间存在以下关系:

1. 数据存储:嵌入模型生成的向量通常需要存储在某种形式的数据库中,向量数据库提供了一种高效的存储和可供检索的容器。

2. 相似性搜索:嵌入模型的目标之一是使得相似的数据在向量空间中彼此接近。向量数据库支持这种基于距离的相似性搜索,使得可以快速找到与查询向量最相似的数据。

3. 性能优化:向量数据库的索引结构和查询优化技术可以显著提高嵌入模型在实际应用中的性能,尤其是在需要处理大规模数据集时。

4. 应用场景:在推荐系统、图像检索等应用中,嵌入模型用于生成数据的向量表示,而向量数据库则用于存储这些向量并提供快速的相似性搜索服务。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值