Scaling LLM Test-Time:谁说类o1推理一定要用RL???

Scaling LLM Test-Time:谁说类o1推理一定要用RL???

  • 1 Scaling LLM Test-Time Introduction

  • 1.1 概述

  • 1.2 编排及导读

  • 2 方法1:纯Inference Scaling

  • 1.2.1 Inferece Test-Time的统一视角:Proposer & Verifier

  • 2.2 Proposer & Verifier 实例:Best-of-N

  • 2.3 Process Reward Modeling

  • 2.4 搜索方法 Process-Searching

  • 2.5 Best-of-N Weighted

  • 2.6 Beam Search PRM

  • 2.7 LookAhead Search

  • 2.8 性能对比

  • 2.9 不同的PRM search在各难度问题的表现

  • 2.10 小结

  • 3 方法2: 推理能力增强

  • 3.1 提议分布

  • 3.2 修改提议分布

  • 3.3 Self-Improve

  • 3.4 revision 数据收集

  • 3.5 revision model结果

  • 3.6 verifier 训练方案

  • 3.7 小结

  • 4 Pretrain Compute V.S. Scaling Test Time

  • 4.1 Exchange Rate度量

  • 4.2 小模型推理token增加14倍就能战胜大模型?

  • 4.3 完整的性能表现

  • 4.4 小结

  • 5 Scaling LLM Test-Time总结

  • Reference

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

DeepMind 2024.08

Scaling LLM Test-Time

1 Scaling LLM Test-Time Introduction

1.1 概述

在预训练Scaling Law性能见顶情况下,研究机构纷纷转向了Post-Training和Scaling Test Time. 这里的Scaling Test-Time指的是在inference时增加更多的算力或时间,从而提升性能。我们可以定义三种Scaling LLM Test-Time类型:

  1. 纯inference推理

  2. 进行特定的训练,使得模型本身具备更优的推理能力。在inference时再辅以搜索功能提升性能(非RL)

  3. 将模型进行RL训练后,能更好的在inference推理+搜索(RL)

在本篇Paper里对比了1,2的方案。并不涉及到RL的训练

我们需要区分:

  1. Inference:模型在使用时预测的next-token的过程,我们通常称为推理

  2. Resoning:字面意义上的推理,如数学、代码和解谜等都算是需要严密的逻辑推导出答案。

  3. Test-Time:Inference的消耗时间,如果常规的贪心解码耗时是1个时间单位,如果我们采样100条路径,那么就花费100个时间单位。

最常见的Scaling inference是1的方案,不涉及到训练。其中最简单的Scaling Test-Time的方法为拒绝采样(Rejection Sampling, RS), 指的是LLM可以在生成中可以采样出多条回答,再基于一种判别方式来筛选出回答,也可以称之为Best-of-N,判别方式可以是基于判别模型(如提前训练好的奖励模型)。另一种方法是是自一致性(Self-Consistency, SC),如对于一道选择题,让模型采样出多次答案选项,随后统计出现频次最高的答案作为一致性答案。

上述方法简单有效,随着而来的问题是,对于复杂的问题,我们需要增加多少的Inference Test-Time才能取得LLM性能显著提升? 这就是这篇文章所探讨的重点

LLM is allowed to use a fixed but non-trivial amount of inference-time compute, how much can it improve its performance on a challenging prompt?

我们提出第二个问题,我们Scaling Test-Time 后,我们能确定性获得性能提升吗?

另外我们增加第三个问题:

Scaling Test-Time 实现是纯Inference吗?那是不用训练了吗?如果要训练一定要用RL吗?

1.2 编排及导读

我们按照方法实现细节、结果和分析来解析本论文。建议在阅读前带着以下问题进行阅读:

  • 如何来做step-wise的奖励数据标注,如何进行非人工标注,PRM的建模方式?

  • model-predicted/oracle难度定义?

  • beam-searching如何step推理和搜索?

  • 什么是Best-of-N weighted?

  • MCTS-like 的 lookahead searching与 MCTS的差异,是否有效?

  • 不同的searching方法的Infra有什么特点?

  • 完整的搜索路径的收益是关注process总合还是last step的奖励?

  • 先抛开inference stage, 如何提升模型本身的reasoning能力,如何高效提升reasoning能力?

  • 如何度量Scaling Test Time的效率?

  • Scaling LLM Test Time里的Proposal model,Process Reward Model, Verify Model,Revision Model分别是什么?

  • 如何度量一个大模型和一个小模型+Test time的效率和性能关系?

2 方法1:纯Inference Scaling

1.2.1 Inferece Test-Time的统一视角:Proposer & Verifier

统一视角来理解Scaling Test-Time。首先需要两个角色:

  1. Proposer提议者:提议者是生成式的语言模型,这里可以根据提示词进行next-token文本生成,由于resoning任务的特殊性,通常要经过一系列的推导步骤才能得到答案。在过去的生成方案里当输出 特殊tokenEOS时终止生成,我们可以另外定义逐步生成,比如在next-token生成过程中遇到\n进行暂停作为一个Step,逐步执行。

  2. Next-token predict:x1 x2 x3, y1, y2, y3, y4, ..., yn, eos

  3. Next-Step predict: x1 x2 x3, (y1, y2, y3, y4, \n), (y5, y6, y7, y8, eos)

  4. Verifier验证者:对生成的内容进行评判,特定的metric和判别模型都可以作为验证者,前者如PPL指标,后者可以是reward model。在reasoning任务里,如果提议者是逐步生成内容的,那么对应的验证者也可以是过程奖励模型逐步验证。

  5. 这里的reward model可以是结果奖励模型(Outcome Reward Model, ORM) 和过程奖励模型(Process Reward Model, PRM)

  6. Last step的Process Reward 也可以用做 Outcome reward, 但这两者意义不等价

Searching against a Verifier:提议者需要生成多种reasoing步骤,而验证者按照评判规则进行选择一条或多条路径进行扩展。更复杂的算法如MCTS,而Scaling LLM Test-Time里采用的搜索算法是MCTS-like,不等同于MCTS

2.2 Proposer & Verifier 实例:Best-of-N

Best-of-N是一种基础的Proposer & Verifier,生成语言模型作为Proposer,对于一个问题Question进行采样(sampling)出多条回答Answer1, Answer 2, ... , 这个采样的过程我们也可以称为是Rejection Sampling;奖励模型作为Verifier,判别回答得分最高的answer*选择,我们称之为Best-of-N,这里的奖励模型如果是通过人类偏好数据进行建模得来的话,那么这里的最高得分的答案即最符合人类偏好

2.3 Process Reward Modeling

我们常用基于偏好的数据来建模Outcome Reward Model,但存在以下问题:

  1. 偏好是outcome reward,不能反应生成过程中的对错。比如long-context文本中的奖励难以用outcome来描述,多步reasoning过程有对有错

  2. 偏好标注存在不一致性,偏好可能存在环状

  3. 偏好是隐式的

  4. 不同领域的偏好能否泛化

  5. 存在reward hacking,比如在安全评判中,如果出现safe单词,就赋予一个高分

其中最大的问题是ORM的反馈稀疏,所以PRM建模能够逐步进行反馈,奖励信号更加密集。我们可以将PRM模型描述为一种过程监督(Process Supervise)模型, 能在序列任务中给到及时反馈。

为什么有ORM了还需要PRM

当在搜索复杂问题的路径上,如“128k词表大小”的动作空间,生成1k文本的动作序列,搜索的空间急剧增长。PRM是有助于缩小搜索空间的。

a.PRM Verified Step:比如我们确定前3步的推理正确后,那么只需要基于确定的步骤做后续推理。

b.PRM Candidated Step:或者我们生成第一步解答时有k个候选step,例如“求解一个非线性优化”问题,我们第一个step可以输出SGD、ADAM、ADAMW和线性回归等选择,进行多个方案来扩展生成。(对错误step剪枝)

2.3.1 PRM建模:Let’s Verify Step by Step

OpenAI的PRM建模:Let’s verify step by step,先从模型里采集step-wise级别的数据,再对每个step进行标注二分类{postive, negative}标注;

采样技巧,让模型先step-wise输出一条正确的路径{Q,S1, S2, S3, S4, A},每个步骤标注label为1 那么再逐步采集负样本。

Q S1 -> S’2 (错误)

Q S1 S2 -> S’3 (错误)

Q S1 S2 S3 -> S’4 (错误)

Q S1 S2 S3 S4 -> A’ (错误)

另外这个错误step也可以人工来写,成本更高

这种过程监督的建模方式直接,但是对于复杂的任务需要繁重的标注,详见数据集PRM800k。下图对于一个prompt,采集出多个step-wise的解答,可以在每个step-chain里标注出label,1代表该解答步骤正确,0为解答步骤错误。

得到标签数据后,可以将PRM建模转化成文本二分类问题,使用CrossEntropy()作为损失函数。

注意:ORM使用单个分类头,输出分数, 这里的PRM使用两个分类头,输出不同类别的概率

2.3.2 PRM建模:reward-to-go

在PRM800的数据里,都是从OpenAI自己的模型采集的step-wise数据做的标注。对于自有模型PaLM 2我们希望采集自身的step-wise的数据,再_自动化标注_。Scaling LLM Test Time采用Deepseek的Math-Shephered的方案:

Rather than proceeding with the expensive process of collecting crowd-worker PRM labels for our PaLM 2 models, we instead apply the approach of Wang et al. [*] to supervise PRMs without human labels, using estimates of per-step correctness obtained from running Monte Carlo rollouts from each step in the solution. Our PRM’s per-step predictions therefore correspond to value estimates of reward-to-go for the base model’s sampling policy, similar to recent work

[*]Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations

该方案不进行step-wise进行人工标注步骤的正确性,而是估计一个step的reward-to-go的价值,大白话是估计这个step往后rollout到答案的胜率。

Math-Shephered PRM的实现是先让模型根据问题Prompt 推理出s1(下图绿色款最左边),这里由于无法直接对s1打分。可以从problems1 进行Rejection Sampling出后续的步骤,以下例子采样3个答案,其中有2个答案是正确的,那么对于s1PRM分数为2/3. 既是当前步骤s1往下执行的概率是2/3,当然我们Rejection Sampling的分支越多,统计一致性越高;

2.3.3 PRM建模区别

可以看出这两种PRM建模是有差异的,建模分数分别是受前向和后向步骤影响。

  1. 前向:OpenAI PRM 关注前向和当前step的合理性。

  2. 后向:Math-Shephered PRM 关注当前状态对后向推导和最终答案的影响

如果我们在step-wise Inferece时,前向PRM分数是基于确定性step往后进行逐步推理,后向是基于当前步骤对胜利的预判再选择是否执行这个步骤。

2.3.4 PRM使用实例

如果我们在Inference时进行step-wiseRejection Sampling,在多条回答中哪一个作为最终的答案?

这里涉及到Paper中5.1章节里的Answer aggregation

Step-wise aggregation: 对于一条路径上的所有step-reward进行累积,总奖励最高的路径被当成是best回答,而Scaling LLM Test Time里用last-step reward进行判别效果更好(下图);

Inter-answer aggregation: 对于Best-of-N是取last step最大奖励值作为回答,而Scaling LLM Test Time使用Best-of-N Weighted的版本来判别,具体是Rejection Sampling多条最终回答,按照投票规则来选择如对于A答案总分0.4+0.3, 而D答案0.6<A答案0.7。

Scaling Test-Time采用Inter-answer aggregation

1.2.3.5 PRM数据格式

一个指令模型需要学会step-by-step生成,在initial training时,可以用PRM800数据集进行训练step-wise的输出,以换行符\n作为step的暂停符号。

When generating the samples, the base model is prompted to output answers in newline separated a step-by-step format, as done in Lightman et al.

如果我们对于一个段落的文本,可以给到GPT-4来进行处理成step-by-step的标注。

2.4 搜索方法 Process-Searching

进入正题,我们可以在有PRM的基础上设计搜索算法,注意到这里的LLM实际上没有经过RL训练,也可以做Searching against a Verifier,论文里提供了三个PRM-Searching方法:

  1. Best-of-N:生成时可以step-wiserejection sampling,采用Inter-answer aggregation策略筛选出答案。

  2. Beam Search:采用束搜索来产生路径。实际上这里的Beam Search是在PRM分数上进行扩展节点的,而不是基于路径上的概率和

  3. Lookahead Search:前瞻搜索是在深度时rollout多步后判别深度的PRM分数,依据PRM分数从深度t的选择节点。这里的是前瞻的步数;实际上实验效果并不如beam search好,且前瞻搜索和标准的MCTS不是一码事,可以skip掉。

特别地,PRM Search图示里Lookahead里,黄色的intermediate solution step的是不判别的,而是对rollout的后续节点判别。

2.5 Best-of-N Weighted

按照图示,可以step-wise进行生成N条候选路径,仅在每条路径的最后一步进行PRM评估和Inter-Answer Aggregation投票,beamlook ahead都是同种判别最后的答案。

Best-of-N的生成的特点在于

  1. 可以并行生成,计算量FLOPS恒定,但耗时可以随着并行而降低耗时

  2. PrefixPrefill KV-Cache可以复用,如VLLM

2.6 Beam Search PRM

Beam Search采用的类似BFS-V,配置N条束和M的束宽度,我们使用N=4, M=2来示例,N/M=2. 算法流程如下:

  1. 在第1步里采样4条束

  2. 在第t步里, 采样计算4个节点PRM value,(也可以是从prefix到当前step的reward-to-go的总和); 在LLM里通常是对token计算已decoding的路径概率和

  3. 筛选PRM分数前2个节点作为t的节点候选。

  4. 在这2个节点各扩展2个节点,总共有4条路径。再重复2-4直至遇到终止步骤

下图对比Beam Search和本文的Beam Search PRM

2.7 LookAhead Search

LookAhead SearchMCTS的一种特例, 在扩展节点时如果边采样多个stepverify,那么效率会比较低,那么我们可以继承Beam Search每个束多生成个step(rollout),在第k-step节点来评估。这里的rollout细节是生成时温度设为0减少方差。这里的时退化成标准的Beam Search

2.8 性能对比

对比3中PRM Search方法的性能。横坐标为生成路径条数(budget),纵坐标为数学任务的测试准确率。简要总结:

下图:计算量少时Beam Search更有优势,计算量充足时上Best-of-N,另外Lookahead优势不明显.

下图:Best-of-NPRM搜索,达到与baseline相当的性能,减少4倍的计算量。这里的结论是实验统计得来,注意不是根据问题能自适应的估计时间消耗。

这里将紫色ORM Best-of-N Weighted当成是baseline, 同等性能使用PRM搜索的话的搜索量级优于baseline的.

2.9 不同的PRM search在各难度问题的表现

如果我们有一个问题集,我们想对问题做分类(简单、中等、难),可以分为两种一种是人工标注,一种是自动化标注,问题难度定义:

**oracle difficulty:**人工进行辨别问题难度,根据经验打标签,作为分类ground truth

**model-predicted difficulty:**对于一个问题,我们采集Rejection Sampling N=2048条回答,如果回答正确数量是i条那么 round(i/(N/5))+1 即是问题的难度等级。

举例:划分5个难度等级。N条回答有1000个答案正确,那么通过上式难度为3. 可见这里的难度含义是由搜索难度来体现的。

我们接下来观察PRM search方法在各个难度的表现,横轴的1-5代表难度等级,越大难度越高。注意到每个难度有4个bar,这里的bar代表搜索量级{4,16,64,256}

  1. 简单的问题(1,2): 在难度1里 PRM Search反而不如最基础的Majority(greedy-search)

  2. 中等问题(3,4):在难度3里Best-of-N Weighted增加搜索量普遍好于beam search

  3. 难题(5): Best-of-N失效,模型reasoning能力有限的情况下,堆叠test-time是无效的。

2.10 小结

  1. 在Train-Free的Scaling Test Time里,Best-of-N weighted + PRM相较baseline Best-of-N weighted + ORM提速4倍

  2. 这里的PRM建模是估计reward-to-go,不需要人工标注,但是自动化逐个step的rollout+打分仍需要较多的计算资源

  3. 仅靠test-time的搜索能力,已经能提升性能了。但是BoN的计算成本随幂级成本增长收益变小,还是得回到训练来本质上提高模型推理能力

  4. 从infra的角度来说, GPU集群适合Best-of-N,边缘设备适合Beam-search

3 方法2: 推理能力增强

3.1 提议分布

提议分布,指的是模型在固定Prompt下的输入分布。在Best-of-N在难题的表现上,虽然可以并行的去采样N条输出,但是输出也是在一个固定分布下。常规的预测模型为

3.2 修改提议分布

那么在Test时,如何动态的改变输入分布,从而改变输出分布。实际上我们在以往的inferece技术都涉及到改变输入分布的技巧,从In-Context Learning说起,仅需改变条件项就能达到修改提议分布,这些提议分布修改是显式

  1. System Prompt:,这里的system prompt例如“你需要安全的回答问题”,“你是一个代码专家”

  2. Few-Shot Prompt: ,这里的e 为示例,n 为示例个数

  3. Chain of Thought Prompt: ,这里的s序列为示例的step-wise思维链输入,同样可以有多个CoT示例

以上的提议修改方案都是静态的,即是运行模版设定好了对应提示词;那么我们要如何动态改变输入分布?

3.3 Self-Improve

要提升模型的Reasoning能力,就改变Proposal Distribution,如果模型本身的Reasoning能力不强,是走不远的。

Self-Improve里采用revision+refine的机制来改变输入分布;实现方法是在线采样回答,如果回答错误,就将错误的回答并入到输入里,可见这里的输入分布时动态修改的。Self-improve的目的是让模型能够revision错误的输出从而refine出正确的答案。这里的提议分布修改是隐式的。

所以还是得训练,使得模型学习到如何在context里进行refine。我们根据图示简述self-improve的迭代提升方法

在第一轮里我们可以根据x生成回复y1,在第二轮可以SFT y1,并且基于{x,y1}生成y2,这里在生成y2时,输入分布就已经改变了。

注意:这里的y1和y2是不同轮次的回答,不是逐步推理粒度上的reasoning step关系

3.4 revision 数据收集

同理Scaling LLM Test Time的模型要提升resonning能力,也同样上self-improve训练,面临的问题是数据采集的效率太慢。

self-improve并不像Best-of-N可以parallel采集,实际上是迭代的on-policyrefine数据并且finetune模型,串行的获取数据。问题是如何高效的合成revision数据?

下图左下方为self-improve的生成过程。右边是Scaling LLM Test Time优化的合成数据方法。

  1. Parallel Best-of-N:我们用N=8来并行采集8条数据,但是这里的输入输出分布是一致的

  2. Sequential Revisions:串行的生成回答,这里抛弃掉了self-improve的iterative training,仅改变inference时的输入分布;问题在于多轮数据文本会变长,推理耗时慢

  3. Combining Sequential / Parallel:图示并行采集两条短的sequential revisions数据,每条序列里可以根据verifier来判别提取出一个最好回答。两条squential可以提取两个最好回答[a1] [a2],按照编辑距离再计算edit[a1, a], edit[a2,a]后升序排序, 这里的a是ground truth。

进一步思考下第3个方案,能否保证两个相邻数据间是否有refine关系?实际上用编辑距离是并不是完美的度量。

Note that token edit distance is not a perfect measure of correlation, but we found this heuristic to be sufficient to correlate incorrect in-context answers with correct target answers to facilitate training a meaningful revision model, as opposed to randomly pairing incorrect and correct responses with uncorrelated responses.

3.5 revision model结果

在获取到revision data后,便可以进行SFT训练和推理。

下图的横坐标为sequential的step次数, 在inference时配置Parallel4*Sequential Step64,即是每次会产生4个回答,verifier选择最好的回答。

下图右边为Sequential Best-of-N在条采样数据上优于Parallel

compute-optimal scaling实验图的绿色标注:同样将Combine对比Parallel的baseline,橙色的条答案性能优于红色,即是Sequential计算效率高于Parallel4倍。

compute-optimal scaling can outper form best-of-N using up to 4x less test-time compute

3.6 verifier 训练方案

在Appendix.J里Revision Model训练过程里的verifier用的是ORM

We therefore, trained a separate ORM verifier to use with our PaLM 2-S* revision model. We could have trained a PRM as well, but opted for an ORM due to the high cost of generating per-step PRM labels

3.7 小结

  1. reasoning性能的提升,离不开本身的模型的提升。哪怕是SFT只要会造数据,如revision数据,就可以让模型学习到refine prompt能力

  2. 改版的self-improve优化了造数据流程和推理流程,能结合并行采样和序列采样的特点。这里的数据都是完整的answer级别

  3. 所训练的revision model在inference时效率提升4倍。

4 Pretrain Compute V.S. Scaling Test Time

4.1 Exchange Rate度量

在LLM 里喜闻乐见的话题是小模型如何战胜大模型。在Scaling LLM Test-Time 同样探究问题:小模型+Scaling Test Time能否战胜大模型。如果有显著的提升,那么在部署端可减少显存占用,但FLOPS不一定能减少。

首先需要考虑的是度量模型的计算量:

  1. Pretrain (X)+ inference(Y)

  2. 当模型参数提升M倍时那么计算量为:M (Pretrain (X)+ inference(Y))

  3. 如果不提升模型参数量, 只Scaling Inference 计算量,则 X+MY

文章里定义一种交换率(exchange rate)来度量大小模型FLOPS差异

训练和推理时其中为为模型参数量,分别为预训练的token数量和推理的token数量。

如果设置M因子,那么增大模型尺寸计算量为, 而小模型要增加k倍Inference time能持平,我们可以构造等式

原文中对小模型的inference time的缩放因子是上面计算得到的。

4.2 小模型推理token增加14倍就能战胜大模型?

进一步设定比例R, 当R>>1时,意味着增加更多的Test-Time

我们来观测调整R时,来观测小模型需要增加k倍inference Test-Time才能与M倍大的模型性能相当。按照实验我们可以来这样来设置,一个大模型参数较小模型参数M已知,大模型的进行greedy生成,那么、已知,同时对小模型同样做条self-improve 生成,能够得到个token,那么我们有确切的R关系时,从而可以通过公式计算k值

下图左图我们只看Revisions推理的level2难度的R>>1的纵线,当~步self-improve推理时(圆点),性能接近大模型(星),此时的k值可以计算增加出~14倍的inferece time。而下图右图实际上更残酷,PRM search并不理想, 小模型如果没有提升reasoning的trick的话,拿小模型Searching到天荒地老都没法比肩大模型。

在medium以上的难题上,明显R<<1时,Pretrain的收益远优于小模型+Scaling Test-Time

4.3 完整的性能表现

在paper里的Fig.1 我们就可以读懂了:

  1. self-improve比在固定的proposal distribution生成效果更好,在对抗不同尺寸模型上的FLOPsself-improve也在难题上有所提升

  2. Search-based的方法里, PRM>ORM搜索出的性能更好,但是对抗大的模型上,在难题上难以提升reasoning性能。

4.4 小结

小模型通过Scaling LLM Test Time能在中等以下题目战胜纯贪心解码的大模型,在难题上受限小模型自身的resoning能力无法提升性能。等量的计算量不能等同性能(no exchangeble)。

这里得到结论,小模型在计算量与大模型相当情况下,小模型性能可以比肩14x的大模型。

5 Scaling LLM Test-Time总结

  1. Scaling LLM Test-Time不能脱离本身模型的resoning能力,模型本身得学会resoning能力,在搜索时收益越大。

  2. 不用RL或标准的MCTS也可以做LLM Searching

  3. 本文的结构的框架:PRM训练(verifier)+模型自身Resoning提升(training)+高效搜索算法(Best-of-N并行)+使用已知信息(self-improve)

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值