AI技术正以前所未有的速度改变着我们的工作与生活。2024年,作为大模型驱动的重要应用形式之一的AI智能体(AI Agents)已经不再只是科技圈的热门话题,而是成为了各行各业关注的焦点。从自动化简单任务到协助数据分析,甚至编写代码,AI智能体的应用范围正在不断扩大。那么,这些AI智能体是否真的如预期般发挥了作用?企业又是如何将它们融入日常工作流程中的?本次为大家简单解析**LangChain公司发布的最新调查报告《State of AI Agents》**中的核心观点,了解AI智能体的现状与未来。
01.整体应用现状
AI智能体被定义为使用大型语言模型(LLM)来决定应用程序控制流的系统。它们的能力范围广泛,从简单的自动化到复杂的决策支持。**调查显示,约有51%的受访者已经在生产中使用AI智能体,而78%的受访者有计划不久后将AI智能体投入生产。**这表明,尽管很多潜在用户对AI智能体的兴趣很高,但实际部署仍然面临挑战。
02.行业采用兴趣
调查发现,不仅技术行业,非技术行业的公司也对AI智能体表现出了浓厚的兴趣。90%的非技术公司受访者表示已经或计划将AI智能体投入生产,与科技公司的89%几乎持平。这显示了AI智能体的跨行业吸引力:已经不再局限在科技型企业,未来将在更多行业与领域得以应用。
03.主要应用场景
AI智能体已经在很多领域展示出了强大的应用潜力。调查结果显示,在三个最重要的应用场景中,58%的受访者将AI代理用于研究和摘要生成,53.5%用于提升个人生产力或提供个人助理服务,45.8%用于客户服务。例如,AI智能体可以帮助用户从大量数据中提炼关键信息,或者协助日常任务如日程安排和组织,从而提高个人生产力。在客户服务领域,AI智能体也发挥着重要作用,帮助公司处理咨询、故障排除,并加快客户响应时间。
04.智能体的控制与人类监督
AI智能体是一个具有自我思考与行动能力的智能应用。随着其功能的逐渐强大,对它们的控制和安全性要求也随之提高。调查显示,大部分人认为追踪和可观察性工具是控制AI智能体的首要手段,很多公司还采用了护栏来防止智能体偏离预定路径。例如,一些公司通过人工专家手动检查或评估响应,增加了一层预防措施,确保AI代理的决策过程透明且可控。
05.智能体部署的主要挑战
智能体完成任务的质量是受访者最关心的问题,也是限制更多智能体部署的最重要因素,其重要性是成本和安全的两倍多。AI智能体的不可预测性(主要来自LLM)增加了错误的可能性,使得团队难以确保智能体始终提供准确、适当的响应。
需要注意的是,小型公司尤其关注任务的性能与质量,45.8%的小型公司将其作为主要关注点,而成本仅为22.4%。这一差距凸显了可靠、高质量的任务完成对于组织将智能体从开发转移到生产是决定性的因素。
当然,智能体的挑战并不限于任务质量。许多人对构建和测试智能里的最佳实践感到不确定,来自于另两个主要障碍,技术与时间**。**
-
技术知识:团队对智能体构建所需的技术知识储备不足,尚在学习中。
-
时间成本:构建、部署、调试、平涂智能体所需的时间投入非常大。
06.成功案例(海外)
在调查中,Cursor、Perplexity和Replit是最受讨论的AI智能体应用。这里面Cursor是一个AI驱动的代码编辑器,帮助开发者编写、调试和解析代码;Perplexity则利用AI革新了传统的搜索引擎的工作与呈现方式;而Replit则通过设置环境和配置,加速软件开发生命周期,让用户在几分钟内构建和部署功能完备的应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。