近期,Nature Medicine的一项研究基于预训练的Transformer模型,通过留一中心交叉验证方案开展卵巢病变辅助诊断研究。该研究技术路线清晰明了且不涉及太过复杂的方法,非常适合有意基于深度学习开展医学影像分析的研究人员入门学习。
引言
卵巢肿瘤是一种常见的病变,通常在开展其它检查时被偶然发现。超声检查是区分卵巢病变良恶性的主要技术手段,其检查结果极大程度上决定了治疗措施。然而,即使是在发达地区,经验丰富的超声检查人员依旧处于短缺状态,这导致误诊、漏诊时有发生。
人工智能辅助诊断技术普遍面临着泛化能力缺乏保证的问题,即由于患者群体、成像设备和采集协议等因素的差异,人工智能辅助诊断技术在不同中心可能存在显著的性能差异。越来越多的研究者提出,全面评估人工智能辅助诊断技术的泛化能力对于临床应用至关重要。
目前,基于深度学习开展的超声图像卵巢病变辅助诊断技术已展现出积极的成果,但仍需充分的外部验证提供佐证。Nature Medicine近期基于Transformer开展了一项国际多中心回顾性研究,方法不算复杂,比较适合用作入门学习的技术路线。
数据及方法
该研究使用了8个国家、20个中心、3652名患者的17119张超声图像,涵盖了9个制造商的21种超声系统。该研究基于预训练的Transformer模型,通过留一中心交叉验证方案开展卵巢病变辅助诊断研究,展现了强大的泛化能力以及媲美资深检查人员的诊断准确性。
在模型构建过程中,该研究通过"留一中心交叉验证"方案构建了一系列卵巢病变辅助诊断模型。该研究每次将一个中心的数据作为测试集,其余数据按照9:1的比例划分训练集、测试集。为了充分利用丰富的组织学检查信息,该研究针对十种不同组织学分类,基于ImageNet预训练的DeiT-S模型开展迁移学习。
该研究采用F1评分、准确率、敏感性、特异性、Cohen’s kappa系数、MCC、DOR、Youden’s J统计量、AUC以及Brier分数等评价指标开展模型评估。考虑到F1评分对精确率和召回率的综合评价能力,该研究将其作为了主要评估手段。在可解释性方面,该研究主要采用基于注意力的显著性图对模型的预测依据进行确认。
该研究基于其构建的超声图像卵巢病变辅助诊断模型提出了分诊策略,为AI模型如何融入临床诊断流程提供了宝贵见解。在此策略下,首先由AI模型和初级超声检查人员分别进行诊断,在诊断结果不一致时再由资深超声检查人员介入,能够有效缓解资深超声检查人员的工作压力。
总结
除了庞大的数据量难以复制外,该研究从数据预处理、模型训练到模型评估的整个分析流程均没有涉及太过复杂的方法,非常适合用来入门。有意基于深度学习开展医学影像分析的读者可以进一步阅读原文,其中的很多表述都可以参考。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。