DeepSeek R1打造自己的知识库,越用越聪明的秘密!喂饭级教学,全程干货!

今天来讲讲,本地部署DeepSeek一个重要应用场景:搭建AI知识库。

知识库的好处

好处1:数据在本地电脑上,保护数据安全和个人隐私,对于企业来说尤为重要。

好处2:通用大模型(比如ChatGPT)缺少垂直领域的知识,每次前提问都需要提供背景信息,上传相关资料,才可以得到相对高质量回答。

而本地模型+知识库的模式,简单的提问就可以很容易得到垂直定制化,且精准的高质量回答。

好处3:使用时间越长,知识库越丰富,回答质量越高,形成正循环。

好处4:不需要联网,即使官方宕机甚至断网也能正常使用。

安装Dify

Dify是一个快速搭建AI应用的项目,支持创建AI聊天机器人、自动化客服等。

本篇主要讲解如何用Dify搭建私人化知识库。

本地找一个不含中文的目录,进入CMD窗口,执行命令,下载Dify项目。

git clone https://github.com/langgenius/dify``cd dify/docker``# .env.example复制,并重命名为 .env``copy .env.example .env

.env是dify的配置文件,保持默认配置就好了。

启动docker,执行命令运行dify。

docker compose up -d

项目启动以后,浏览器访问:http://127.0.0.1/apps/

首次进入需要设置管理员账号,并且登录进入系统。

Dify配置

分为2个步骤:添加模型和添加知识库。

页面右上角头像 -> 设置 -> 模型供应商,下拉找到Ollama,【添加模型】。

参数如下:

模型类型:LLM

模型名称:deepseek-r1:7b (根据电脑配置选择1.5b/7b/8b/32b等)

基础URL:http://host.docker.internal:11434

其他参数默认。

配置向量化模型【Nomic-Embed-Text】,它具备强大的长上下文处理能力。下载命令:

ollama pull nomic-embed-text

同样的方式,在Ollama下添加模型,参数如下:

模型类型:Text Embedding

模型名称:nomic-embed-text:latest

基础URL:http://host.docker.internal:11434

其他参数默认。

保存以后,即可完成2个模型的添加。

结果如下图:

配置2个大模型以后,开始配置【知识库】。

回到首页,切换到【知识库】菜单,创建知识库。

数据源有3种:导入已有文件、同步自Notion内容、同步自Web内容。

这次搭建的是本地离线知识库,选第1个,导入准备好的知识库材料,【下一步】。

检索设置选【混合检索】,其他参数不变,保存并处理。

稍等一会,知识库就设置完成了。

使用知识库

知识库建好了,怎么用呢?

回到首页,切换到【工作室】菜单,点击【创建空白应用】。

应用类型选【聊天助手】,应用名称和图标,根据自己需要填写。

点击【创建】,下方的上下文栏,就是设置知识库的地方。

点【添加】,在弹窗上,选择刚刚创建的知识库。

设置完成以后,就可以发布使用了。

右上角【发布】-> 【更新】-> 【运行】。

运行以后,页面自动跳转到对话页面,一个自带知识库的AI聊天助手就完成啦。

来测试下。

大模型有一个特点:没有自我意识,对自己不了解。

提一个问题:what is DeepSeek V3?

官方的回答就非常简单,而包含DeepSeek V3论文知识库的本地模型,它的回答就非常准确详细,即使这个问题很简单,不联网搜索。

效果立竿见影!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 DeepSeek R1 构建本地化 RAG 知识库 #### 准备工作环境 为了构建基于 DeepSeek R1 的本地化 RAG 系统,需先安装必要的软件包并配置开发环境。推荐使用 Python 虚拟环境来管理依赖项。 ```bash python3 -m venv rag_env source rag_env/bin/activate pip install deepseek-r1 langchain streamlit ``` #### 数据准备与预处理 创建一个结构化的数据集作为知识源,可以是 JSON 文件或其他易于解析的形式。对于每条记录,应至少包含唯一标识符、正文内容以及任何有助于后续检索的相关元数据字段。 ```json [ {"id": "doc_001", "content": "这是第一条文档的内容...", "metadata": {...}}, {"id": "doc_002", "content": "第二条文档的信息在这里.", "metadata": {...}} ] ``` #### 初始化索引数据库 利用 LangChain 或其他相似框架建立向量存储层,以便于之后进行高效的语义匹配查询操作。 ```python from langchain.indexes import VectorStoreIndexWrapper, Chroma documents = [...] # 加载之前准备的数据列表 vector_store = Chroma.from_documents(documents=documents) index_wrapper = VectorStoreIndexWrapper(store=vector_store) ``` #### 配置 DeepSeek R1 模型实例 加载预先训练好的 DeepSeek R1 模型,并设置好运行参数以优化性能表现。 ```python import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer device = 'cuda' if torch.cuda.is_available() else 'cpu' model_name_or_path = "path/to/deepseek-r1" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path).to(device) ``` #### 实现核心逻辑函数 编写用于接收用户输入、调用检索服务获取最相关的上下文片段、再经由生成模型合成最终回复的核心业务流程方法。 ```python def generate_response(query_string): retrieved_docs = index_wrapper.similarity_search(query=query_string)[:5] # 获取前五名相关度最高的文档 context_texts = "\n".join([d.page_content for d in retrieved_docs]) inputs = tokenizer(f"{query_string} [SEP] {context_texts}", return_tensors="pt").input_ids.to(device) outputs = model.generate(inputs) response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return response_text ``` #### 打造交互界面 最后一步就是设计图形用户接口 (GUI),让用户可以通过 Web 浏览器方便地访问这套系统所提供的问答能力。Streamlit 提供了一个简单易用的方式来部署此类应用程序。 ```python import streamlit as st st.title('DeepSeek R1 Localized Knowledge Base') user_input = st.text_area("Ask anything:") if user_input: answer = generate_response(user_input) st.write(answer) ``` 通过上述步骤,已经完成了一个完整的基于 DeepSeek R1 的本地化 RAG 知识库解决方案的设计[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值