这些本文有点硬核,需要一定耐心!
就因为白嫖了腾讯云的无限♾️畅玩 API,为了在有效期内,充分使用,我把 LKE 功能全部玩了个遍。
已经讲过的有:
获取 DeepSeek R1 的API在本地使用
基于LKE 和 DeepSeekR1 实现大模型搜索功能
基于LKE 和 DeepSeekR1 创建大模型知识库
今天来说说“基于于LKE 和 DeepSeekR1 的工作流”。
工作流,可以让你用可视化的方法,完成各种流程类的工作。
工作流的玩法非常多,可以说是千变万化。通过节点和连线,可以组合出各种各样的应用。尤其是加入大语言模型这个节点类型之后,工作流就变得更加智能了。
下面就以图书馆借书服务为例。演示下如何创建工作流,如何制作工作流,如何调试工作流,如何使用工作流。
工作流预览
可以先来预览一下工作流:
预览一下调试过程:
这些关键信息可以一次性输入,也可以根据提示逐个输入。整个工作流会保证准确搜集到这些信息,最终完成借书和还书的操作。
下面就开始具体的操作了。
创建工作流应用
首先还是需要先打开腾讯云的 LKE 控制台。
网址:
https://lke.cloud.tencent.com/lke
打开控制台之后,点击应用管理->新建应用->输入名称设置图标->点击新建。
创建完成之后,就来到了应用配置界面,在这个界面直接点击工作流管理。
进入工作流创建界面。工作流是这个应用的一部分。我们可以同时启用基于 DeepSeek的搜索,知识库,工作流。
创建工作流
点击新建开始创建工作流。
工作流的创建分了两种类型:手动录入和批量导入。
从零开始创建工作流肯定是选择手动录入。
输入工作流名称和工作流描述,点击确定。
创建成功之后,就来到了工作流的主界面。
这个界面上主要关注三个部分:节点,流程图,调试。
左边是节点,节点分多种,有信息收集,信息处理,条件判断。
中间是流程图,默认的流程都只有两个节点,一个开始节点,一个结束节点。
鼠标移到上面,会出现一个➕号,可以拖出一条线,连接到其他节点。
点击这个节点,会展现节点所有设置项和信息,可以修改这些设置。
右上角是调试按钮,点击调试按钮,就会跳出一个对话框。
如果流程中参数有遗漏,点击调试后,会直接显示遗漏的项。
批量导入工作流
经过我的尝试,如果一上来就是自己配置每个节点,难度还挺大。所以如果是新手练手的话,最好是用一个已经制作好的工作流。然后直接批量导入工作流。
工作流是以 Zip 格式保存的压缩包文件。直接把这个压缩包上传,然后点击确定,就可以批量导入了。
核心工作流
导入之后,立马就可以看到完整的工作流了。
主流程如下:
-
开始
-
询问服务类型(借书,还书)
-
判断服务类型(如果借书那么,如果还书那么,否则)
-
询问借书书名和时长(获取书名和借阅时间)
-
借书时长归一化(把各种时长的描述统一为多少天)
-
查询图书库存(通过接口查询返回结果)
-
判断是否能借书(根据上一步返回结果判断)
-
询问借书用户账号(获取账号信息)
-
借书操作(根据书名和用户信息完成借书操作)
-
判断是否借书成功(如果,那么,否则)
-
借书成功回复(输出相关信息)
-
结束
上面是主流成,当然还有很多分支。比如还书,比如你想借的书已经没有了,询问是否要换其他书。比如借书的时候用户ID 不存在借书失败。
当流程梳理完毕之后,就可以直接点击调试了。调试过程,会动态显示每一个节点的数据,如果出现错误,也会有错误信息。
节点详解
工作流有了之后,我们可以来重点分享一下节点。
参数提取节点
在整个工作流中,参数提取节点我们用到了三次。一次是问服务类型,然后是问书名和时长,最后问了用户 ID。
下面以服务类型为例,进行说明。
点击训服务类型节点,右侧会跳出详情,在参数信息中有一条记录,叫服务类型。
点击编辑图标,打开参数编辑界面。
主要填写项目有:
参数名称:服务类型
参数类型:string(字符串)
参数描述:表示图书馆服务中的服务类型,支持“借书”、“还书”和“规章制度查询”**三种服务。
参数收集示例:**借书,还书,规则制度查询。
服务名称根据需求写,服务类型一般选 string 就可以了。除非你有精确的类型需求。
这里的参数描述和示例比较重要,填写的内容相当于提示词,会交给大模型去理解。然后我们才能从对话中提取参数。如果按传统的应用模式,一般需要创建一个用户表单来收集。
条件判断节点
条件判断节点主要是做逻辑分支。不同情况,用不同的流程。
比如第一个服务类型判断节点。
当询问服务类型节点运行完毕之后,就会收集到到具体的服务类型,比如“借书” 。借书这个值会保存在服务类型.output.服务类型中。
后面在服务类型判断这个节点中,就可以使用这个变量。
当这个节点
变量,等于,借书,那么…
变量,等于,还书,那么…
如果都不是,那么…
经过这个节点之后,出现了三个分支。
这里还有一个 AI 的图标,不启用的时候,使用精准判断,启用之后可以用 AI 进行智能的模糊匹配。默认推荐使用 AI 来匹配,除非你有自己的需求。
大模型节点
利用大模型强大的理解能力,对节点数据进行基于语意的处理。
这个流程中用于借书时长归一化处理。
所谓归一化处理,就是把时间用统一的标准描述。由于人的不可控性,导致输入的时间会千奇百怪,在以往的系统中,程序员需要写无数的代码来保证用户不犯错。
现在有了大语言模型,可以让他来做这些事情。用户的表达空间大了,工作流也能获取自己想要的东西,继续往下走。
这一步创建了一个叫 borrowTime的变量,这个变量,就是来自于前面参数提取节点提取到的参数。之前的输入内容可能是:两周,一个月,一年。经过大模型转换,就全部会变成天数,14 天,30 天,365 天。
工具节点
工具节点,可以调用各种 API 完成特定功能。
在我们的工作流中也用到了好几次,其中一次就是查询图书库存。
点击图书库存,可以打开详细信息。
这个节点,其实就是构建一个 Http 请求,并接收返回内容。
首先是指定接口地址,授权方式,请求方式。
然后是构建API参数,参数可以放在 header,query,body 里面。
然后是接收输出变量。
这个节点在整个工作流中非常关键。官方给的流程图,并没有实现这个接口。所以直接运行工作流,就会出错。
针对这种情况,可以直接编写一个简单的接口。
接口可以接收 bookTitile 和 borrowDuration 两个参数,然后根据这个参数到数据库里去查询,是否还有这本图书,如果有的话就返回true,如果没有的话就返回false。
如果你没有数据库,那么可以直接返回 true,让这个流程走下去。
如果你代码不会写,我给你一个参考代码。
上面的代码已经完成了工作流中需要的两个接口。一个是查询接口,一个是验证接口。
只要在任意一个服务器上安装 Python。
然后运行命令:python3 server.py
然后就可以把 ip:8000/query ip:8000/checkid,配置到查询图书库存和借书操作的接口选项里面了。
当访问这些接口的时候,会按数据格式要求返回数据。数据以 JSON 格式返回。
response = {‘isAvailable’: isAvailable}
response = {‘success’: ‘true’, ‘message’: ‘成功’}
如果没有服务器,可以通过之前讲的 ngrok 内网穿透到自己的电脑上。
当理清楚上面的各类节点,配置好工具节点之后。
就可以开始调试了。
工作流调试
点击右上角的调试按钮。
在弹出的界面中,如果发现流程图有问题,就会把问题显示在上面,如果没问题,就可以直接点击去调试了。
调试过程中,可以按步骤输入需要的内容,也可以一次性输入。
上图中显示了对话过程,和工作流的运行进程。当我输入书名和时长之后,查询图书库存的操作已经完成,目前正在等待我输入用户 ID,然后继续后面的流程。
点击查询图书库存的详情链接。会跳出具体的数据。
这个数据在调试过程中很重要,如果出现错误,这里会有错误信息。
当我们输入了用户 ID 之后,整个流程就很快走完成了。
调试成功之后,就可以去应用里面进行测试了。
应用里面测试的时候,并不会一上来就问你要借书还是还书。
需要你触发关键词才会进入工作流程。
也就是说一个应用里面可以插入无数工作流,一个工作流又可以有很多节点和流程。最终可以做到,在一个对话窗口里完成各种各样的工作。如果把对话形式换成语音…那就更上一层楼了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。