Dify+DeepSeek-R1: 我的超强AI工作流,详细的部署与使用实录

这个春节AI圈可以说是热闹非凡。deepseek连放"卫星",先是R1震惊四座,现在又整了个能跟DALL-E 3叫板的Janus-Pro。

与此同时,有个叫dify的开源平台默默破了6万star,成了开源开发圈的新宠。今天,我要跟大家分享如何搭建这对黄金搭档,以及我简单的使用心得。

Dify是何方神圣?

Dify是一个开源的LLM应用开发平台,它通过直观的可视化界面,帮助开发者快速构建和部署AI应用,支持包括模型管理、知识库、工作流编排等全方位功能,你可以把它理解为一个类似于扣子的"AI应用的乐高积木系统"。

来!安装试试看

在开始安装之前,我们需要确保系统满足以下基本要求:

  • CPU至少2核心
  • 内存至少4GB(建议8GB以上)
  • 硬盘空间至少20GB(为了后续扩展)
  • 操作系统支持:Windows、macOS或Linux

1. dify的安装步骤

首先,让我们来安装dify。虽然有多种部署方式,但我建议使用Docker方式部署,这样最简单稳妥也最不容易出错:

  • 下载代码:
git clone https://github.com/langgenius/dify.git
cd dify/docker

  • 配置环境:
cp .env.example .env

  • 启动服务:
    如果你使用的是Docker Compose V2:
docker compose up -d

如果是V1版本:

docker-compose up -d

安装完成后,通过以下命令检查服务状态:

docker compose ps

检查要特别关注以下几个关键容器的状态:

  • docker-api-1:API服务
  • docker-web-1:Web界面
  • docker-worker-1:后台任务处理
  • docker-db-1:数据库
  • docker-redis-1:缓存服务
  • docker-nginx-1:反向代理

所有容器都应该显示"Up"状态。然后我们可以通过浏览器访问:

http://localhost/install

2. deepseek-r1的部署

接下来是安装deepseek-r1。这个过程相对简单,但需要注意一些细节:

  • 安装Ollama:Windows用户:从官网下载安装包.Linux用户:使用curl安装
curl -fsSL https://ollama.ai/install.sh | bash

  • macOS用户:使用Homebrew安装
brew install ollama

安装完成后,打开终端验证:

ollama -v

  • 下载deepseek-r1模型:基础版本(推荐新手使用):
ollama run deepseek-r1:7b

高性能版本(需要较好的硬件配置):

ollama run deepseek-r1:14b

下载过程可能需要一段时间,取决于你的网络速度。7b版本大约需要4.7GB空间,14b版本需要约9GB空间。

3. 系统联调与配置

现在两个系统都装好了,需要进行整合配置:

dify基础配置:打开.env文件,配置以下关键参数:

`CONSOLE_URL=http://localhost SERVICE_API_URL=http://localhost UPLOAD_FILE_SIZE_LIMIT=50 # 文件上传限制,单位MB UPLOAD_FILE_MIME_TYPES=.pdf,.doc,.docx,.txt # 允许上传的文件类型`在dify控制台中添加模型配置:访问http://localhost,完成注册,登录后进入Settings → Model Provider添加Local Model配置,这里选择ollama就可以了

选择API格式为Ollama,相关的配置如下,因为我是使用的docker来进行部署的,访问部宿主机的地址记得使用host.docker.internal这个地址,你也可以使用你局域网电脑中的网址!

测试整合,来创建一个简单的聊天会话应用创建一个新的应用

选择刚配置的deepseek-r1模型,我发送测试消息发送测试消息验证响应

实战应用案例

现在来分享一些实际应用场景和具体的操作步骤。

智能文档案例

什么是知识库?知识库就像是一个智能的企业大脑,你可以往里面放入公司的各种资料,比如产品手册、培训文档、客户案例等。当有人需要找什么信息时,不用再到处问同事或者翻文件夹,直接在知识库里搜索就能快速找到答案。它最大的特点是可以帮你管理和查找各种资料,让公司的知识经验能够保存下来,新员工也能更快上手工作。

创建知识库:进入dify控制台,选择"Dataset"→"Create New",上传文档文件,这里的文档支持多种格式,也支持从notion当中导入,还可以同步外部的站点

设置索引参数和检索规则,这里我推荐使用 nomic-embed-text:latest作为你的文件嵌入模型,也是使用 ollama来拉取和运行,pull一下就可以了,完全不用操心其他的操作!

ollama pull nomic-embed-text

完成上面的步骤之后,我们就可以导入自己需要检索的文档。在后面的对话或者工作流中直接引用

工作流案例

配置工作流:创建新的Workflow,我这里直接选择一个已有的工作流: 文档总结工作流

然后添加文档处理节点,这里只需把之前的GPT3.5换成DeepSeek-R1就可以了

操作步骤如下:

当然你也可以自定义设置提示词模板:

`任务:分析以下文档并提取关键信息 文档内容:{{context}} 要求: 1. 提取主要观点 2. 总结关键数据 3. 生成行动建议之之后`击运行输入要总结的内容

最后的运行结果是:

最后

上面演示的只是Dify最简单的聊天应用知识库和工作流的使用,还有更多的功能和工作流值得您挖掘,更多高级的用法,请关注字节笔记本微信公众号后续的文章!

玩Dify的工作流本身就像搭积木一样,用它来搭建各种有趣的 AI 应用。比如做一个智能客服,帮你自动回答客户的问题;或者做个私人助理,帮你整理文档、写邮件、做会议记录;甚至可以做个创意助手,帮你写文案、做营销策划、设计广告语。

你不需要写复杂的代码,只要像拖拽积木一样,把不同的功能模块组合在一起,就能做出你想要的应用。它就像是给你一套 AI 魔法工具,让你能轻松地把脑子里的想法变成现实。

而且扣子能做的,它统统都能做!

因为deepseek已经把开源的威力充分的展示给大家看了!相信随着AI技术的快速发展,dify和deepseek-r1的结合使用将会迎来更多可能性!

结语

通过本文的详细指南,相信大家已经对如何部署和使用这对搭档有了深入的了解。记住,工具的价值在于使用,建议大家在实践中不断探索和优化,找到最适合自己需求的使用方式。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,用户想了解如何使用DeepSeek、OpenWebUI和Ollama搭建私有化的RAG知识库。首先,我需要回忆相关的引用内容,看看有没有相关的技术方案。引用[1]提到了使用LangChain-Chatchat、ollama和bge-m3搭建本地知识库,但用户这里需要的是OpenWebUI。引用[2]提到Ollama + FastGPT,可能相关。引用[3]则详细介绍了使用DeepSeekR1Dify,支持Ollama和Ktransformer。虽然用户提到的工具是OpenWebUI,但可能需要结合这些引用中的方法进行调整。 接下来,我需要整合这些信息,给出一个可行的步骤。首先,安装Ollama作为本地模型服务,然后部署OpenWebUI作为前端界面,接着配置DeepSeek模型,最后整合RAG功能。可能需要参考引用中的向量库和Embedding设置,如默认配置,以及文件上传到知识库的步骤。此外,引用[3]提到的Dify平台可能是一个替代方案,但用户明确要求OpenWebUI,所以可能需要调整步骤。 需要注意用户提到的组件:DeepSeek、OpenWebUI、Ollama。需要确保这些工具能协同工作。例如,Ollama负责运行模型,OpenWebUI提供用户界面,DeepSeek可能作为嵌入模型或生成模型。可能需要使用bge-m3作为Embedding模型,如引用[1]所述,或者按默认设置。 然后,构建步骤时,应该分阶段:环境准备、安装各组件、配置整合、测试使用。需要详细说明每一步的具体操作,比如Docker命令、配置文件修改等。同时,要提醒用户可能遇到的常见问题,如端口冲突、模型加载问题,并给出解决建议。 最后,生成相关问题,可能涉及性能优化、扩展功能、安全措施等,这些需要基于引用中的信息,比如引用[2]提到的不同开源库的选择,引用[3]中的高效RAG实现方法。 确保回答结构清晰,步骤明确,同时引用相关文献,比如在提到向量库和Embedding时引用[1],在讨论不同开源库时引用[2],在涉及高效RAG配置时引用[3]。同时,保持语言自然,符合用户要求的格式,如使用中文,正确应用LaTeX格式等。</think>### 使用 DeepSeek、OpenWebUI 和 Ollama 搭建私有 RAG 知识库的技术方案 #### 一、技术组件说明 1. **Ollama**:本地大模型运行框架,支持多种开源模型(如 LLaMA3、DeepSeek 等)的快速部署[^2][^3]。 2. **OpenWebUI**:开源的 Web 交互界面,提供类似 ChatGPT 的对话体验,支持本地模型集成。 3. **DeepSeek**:可选择其开源模型(如 DeepSeek-MoE)作为 RAG 的生成模块,或使用其蒸馏版提升推理速度。 4. **RAG 核心**:包含文本向量化(Embedding)、向量数据库(如 Chroma/FAISS)、检索增强生成流程。 #### 二、搭建步骤详解 ##### 1. 环境准备 ```bash # 安装 Docker 和 Docker Compose sudo apt-get install docker.io docker-compose # 创建专用目录 mkdir ~/rag_system && cd ~/rag_system ``` ##### 2. 部署 Ollama 服务 ```bash # 拉取 Ollama 官方镜像 docker pull ollama/ollama # 启动容器(暴露 11434 端口) docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama # 下载 DeepSeek 模型(示例使用 7B 版本) docker exec -it ollama ollama pull deepseek-llm:7b ``` ##### 3. 配置 OpenWebUI ```yaml # docker-compose.yml version: '3.8' services: openwebui: image: ghcr.io/open-webui/open-webui:main ports: - "3000:8080" volumes: - ./data:/app/backend/data environment: - OLLAMA_BASE_URL=http://ollama:11434 depends_on: - ollama ``` ##### 4. 构建 RAG 流程 ```python # 伪代码示例(基于 LangChain) from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA # 使用 bge-m3 中文嵌入模型[^1] embedder = HuggingFaceEmbeddings(model_name="BAAI/bge-m3") vector_db = Chroma(persist_directory="./chroma_db", embedding_function=embedder) # 连接 Ollama 的 DeepSeek 模型 qa_chain = RetrievalQA.from_chain_type( llm=Ollama(model="deepseek-llm:7b"), retriever=vector_db.as_retriever() ) ``` ##### 5. 知识库管理 - 通过 OpenWebUI 上传文档(PDF/TXT/Markdown 等) - 文件自动进入预处理流程: $$文本分块 \rightarrow 向量化 \rightarrow 存入 Chroma 数据库$$ - 在对话界面启用 RAG 模式即可使用知识库增强的回答 #### 三、性能优化建议 1. 硬件要求: - 最低配置:16GB RAM + NVIDIA GTX 1080(支持 CUDA 11+- 推荐配置:32GB RAM + RTX 3090(FP16 加速) 2. 模型选择: - 轻量场景:使用 DeepSeek 蒸馏版(4bit 量化后仅需 6GB 显存) - 精度优先:采用 DeepSeek 67B 全参数版本 #### 四、验证测试 ```bash # 检查服务状态 curl http://localhost:3000/api/health # 测试知识库检索 curl -X POST -H "Content-Type: application/json" -d '{ "query": "什么是 RAG 技术?", "knowledge_base": "tech_terms" }' http://localhost:3000/api/chat ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值