前言:
随着数字化转型进入深水区,许多企业在战略规划时面临认知瓶颈。本文系统梳理六大转型维度,为企业提供全景式参考框架。作者在《数字蝶变——企业数字化转型之道》(2019年电子工业出版社)中提出的"数字技术闭环"理论,为理解当前转型困局提供了重要视角。
一、业务流程再造工程
\1. 数字化重构原则
运用数字技术对全价值链进行解构重组,建立端到端的数字化流程体系。遵循"四化"改造标准:无纸化、实时化、智能化、自适应化。
\2. 价值创造矩阵
通过流程再造可实现七维价值突破:
• 数据资产沉淀
• 运营成本优化
• 执行效率提升
• 风险管控强化
• 客户体验升级
• 决策科学化转型
• 商业模式创新
典型案例:某制造企业通过智能仓储系统实现库存周转率提升300%,订单处理时效压缩至分钟级。
二、组织管理体系重构
\1. 职能转型路径
• 人力资源:三支柱模型转型(HRBP/COE/SSC)
• 财务共享中心:实现核算自动化(T+0实时出表)
• 供应链敏捷化:构建需求预测-采购-生产-交付数字孪生体系
\2. 组织形态进化
建立"前中后台"协同机制:
• 前台:客户价值感知单元
• 中台:资源配置中枢
• 后台:基础保障平台
标杆案例:蒙牛建立人力资源共享中心后,服务人员精简76%,员工满意度升至95%。
三、客户价值创新工程
\1. 全生命周期运营
构建"识别-触达-转化-留存-增值"数字化链路:
• 智能画像系统(CAID)
• 个性化推荐引擎(IRE)
• 全渠道交互平台(O2O+)
\2. 体验升级策略
• 沉浸式交互体验(AR/VR应用)
• 预测式服务交付(Proactive Service)
• 生态化权益体系(积分通兑等)
四、商业模式升维策略
\1. 平台化演进路径
经历四个发展阶段:
点状企业→线性协同→平台运营→生态构建
\2. 生态化特征
• 多边市场效应
• 网络价值倍增
• 数据资产流通
典型案例:海尔从家电制造转型为物联网生态平台,孵化4000+小微企业,形成衣食住娱全场景生态。
五、产业生态培育工程
\1. 生态构建模式
• 技术赋能型(华为HiLink)
• 资源整合型(高德地图生态)
• 数据驱动型(健康数据可信空间)
\2. 运营关键要素
• 开放接口标准化
• 利益分配机制设计
• 生态治理体系建设
六、数字产业创新实践
\1. 数据要素开发
• 工业数据空间(设备健康管理)
• 医疗数据沙盒(AI辅助诊疗)
• 金融数据通(供应链融资)
\2. 新兴业态探索
• 数据交易服务
• 算力租赁平台
• 数字孪生建模
结语:
数字化转型需突破传统投资思维,建立"技术-数据-业务"正向循环。建议企业建立转型评估矩阵,从战略契合度、技术可行性、商业价值三个维度进行优先级排序。关注数据资产的持续积累与深度应用,方能在数字经济时代构建可持续竞争优势。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。