人类的聪明之处在于能“分步骤解决问题”。比如算一道数学题,我们会先列公式、再分步计算,最后验证结果。而传统的AI模型更像“直觉派选手”,直接输出答案,但面对复杂任务容易出错。
论文:Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning
地址:https://arxiv.org/pdf/2504.03151
这篇论文指出,让模型学会“推理”(比如分步骤思考、自我修正)是提升其能力的关键。例如,Chain-of-Thought(思维链)技术让模型像学生写作业一样展示解题过程,不仅提高答案准确性,还能让人类理解模型的“脑回路”。
视觉推理论文数量增长图
多模态推理的难点:当模型同时看图和读文字
想象一下,你看到一张“猫在沙发上”的图片,但文字描述是“狗在睡觉”。人类能轻松判断矛盾,但模型可能会混乱——这就是多模态推理的挑战:融合视觉与语言信息,处理矛盾或缺失。
论文提到,模型需要解决三大难题:
- 信息冲突(比如图文不一致)
- 空间关系理解(判断物体位置)
- 幻觉控制(避免“无中生有”,比如把沙发上的猫说成老虎)。
这些能力需要模型既能“看细节”,又能“逻辑自洽”。
两大技术路线:训练优化 vs 实时推理
为了提升推理能力,研究者分成了两大门派:
门派一:课后补习班(Post-training)
- 目标:通过额外训练让模型变得更聪明。
- 方法:比如用强化学习“发奖状”,鼓励它生成更合理的推理路径;或者模仿人类解题步骤(模仿学习)。
训练与推理的循环框架图,展示模型如何通过优化策略生成更好的推理路径
门派二:考场现学现卖(Test-time Compute)
- 目标:不修改模型参数,在答题时动态优化。
- 方法:比如生成多个解题思路(类似“头脑风暴”),再选最优答案;或用蒙特卡洛树搜索(MCTS)模拟“试错过程”。
搜索策略示意图,展示模型如何探索不同推理路径
数据集与评估
要检验模型的推理能力,需要设计“高难度考题”。论文列举了多类数据集:
- 时空推理题:比如视频问答,要求模型分析动作顺序(人类正确率90%,模型仅15%)。
- 反事实推理:比如问“如果电视关着,画面会怎样?”考验逻辑想象力。
- 自我修正题:让模型从错误中学习,比如先答题再根据反馈修改。
这些数据集像“奥数竞赛题”,专门测试模型的薄弱环节。
未来展望
论文指出了几个关键方向:
- 视觉奖励机制:让模型从图像细节中自主总结规律(比如通过“放大图片”找线索)。
- 动态交互能力:不仅能看静态图,还要理解视频中的连续动作。
- 减少依赖人类标注:用自动化方法生成高质量训练数据。
未来的AI可能像“侦探”,能主动观察、推理,甚至预测未发生的情景。
实际应用
- 教育:AI家教能分步骤讲解题目,指出学生错误。
- 医疗:结合医学影像和病历文本,辅助诊断。
- 自动驾驶:实时分析路面视频和传感器数据,预判风险。
- 内容创作:生成图文高度匹配的广告或故事。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。