✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
无线传感器网络(WSN)是一种由大量分布在监测区域内的无线传感器节点组成的网络。这些传感器节点能够收集和传输环境数据,如温度、湿度、压力等。WSN在许多领域都有着广泛的应用,包括环境监测、军事监测、医疗保健等。
然而,WSN的性能往往受到传感器节点布局的影响。传感器节点的布局不合理会导致信号覆盖不均匀,影响数据采集的准确性和网络的稳定性。因此,如何优化传感器节点的布局成为了WSN研究领域的一个重要课题。
最近,一种基于蜣螂算法的DBO(Dung Beetle Optimization)算法被提出,用于优化WSN的覆盖问题。蜣螂算法是一种模拟蜣螂觅食行为的启发式算法,通过模拟蜣螂在寻找食物的过程中的行为,来寻找最优解。DBO算法则是在蜣螂算法的基础上,针对WSN的覆盖优化问题进行了改进和优化。
DBO算法通过模拟蜣螂在移动过程中的信息传递和协作行为,来优化WSN的传感器节点布局。在算法中,蜣螂被视为传感器节点,它们之间的信息交流和协作可以帮助优化整个网络的覆盖效果。通过迭代优化的过程,DBO算法能够找到最优的传感器节点布局,从而提高了WSN的覆盖效率和稳定性。
与传统的优化算法相比,DBO算法具有许多优势。首先,它能够充分考虑传感器节点之间的协作关系,从而更好地优化整个网络的覆盖效果。其次,DBO算法具有较强的全局搜索能力,能够快速找到最优解。此外,DBO算法还具有较强的鲁棒性,能够应对网络中传感器节点的故障和动态变化。
在实际的WSN应用中,DBO算法已经取得了一些令人瞩目的成果。通过将DBO算法应用于WSN的传感器节点布局优化问题,可以显著提高网络的覆盖效率和数据采集的准确性。同时,DBO算法还能够降低传感器节点的能耗,延长网络的寿命,从而降低了维护成本。
总的来说,基于蜣螂算法的DBO算法为WSN的覆盖优化问题提供了一种新的解决方案。通过模拟蜣螂在寻找食物的行为,DBO算法能够有效优化传感器节点的布局,提高了WSN的覆盖效率和稳定性。未来,随着WSN技术的不断发展和应用领域的拓展,DBO算法有望在WSN领域发挥更大的作用,为WSN的性能优化提供更多的可能性。
📣 部分代码
% -----------------------------------------------------------------------------------------------------------
% Dung Beetle Optimizer: (DBO) (demo)
% Programmed by Jian-kai Xue
% Updated 28 Nov. 2022.
%
% This is a simple demo version only implemented the basic
% idea of the DBO for solving the unconstrained problem.
% The details about DBO are illustratred in the following paper.
% (To cite this article):
% Jiankai Xue & Bo Shen (2022) Dung beetle optimizer: a new meta-heuristic
% algorithm for global optimization. The Journal of Supercomputing, DOI:
% 10.1007/s11227-022-04959-6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% qq群:439115722
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%pop是种群,M是迭代次数,fobj是用来计算适应度的函数
%pNum:滚球蜣螂的数量
%需要注意的是种群的大小以及各个小种群的大小都是可以根据实际问题自行调整的
function [fMin , bestX, Convergence_curve ] = DBO(pop, M,c,d,dim,fobj )
P_percent = 0.2; % 滚球蜣螂所占整个种群的比例
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop * P_percent ); %滚球蜣螂的数量
lb= c.*ones( 1,dim ); %下边界 a vector
ub= d.*ones( 1,dim ); % 上边界 a vector
%Initialization 初始化种群
for i = 1 : pop
x( i, : ) = lb + (ub - lb) .* rand( 1, dim );
fit( i ) = fobj( x( i, : ) ) ;
end
pFit = fit;
pX = x;
XX=pX;
[ fMin, bestI ] = min( fit ); % fMin denotes the global optimum fitness value
bestX = x( bestI, : ); % bestX denotes the global optimum position corresponding to fMin
% Start updating the solutions.
for t = 1 : M
[fmax,B]=max(fit);
worse= x(B,:); %全局最差位置
r2=rand(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%5%%%%%%这一部位为滚球蜣螂的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1 : pNum
if(r2<0.9)
r1=rand(1);
a=rand(1,1);
if (a>0.1)
a=1;
else
a=-1;
end
x( i , : ) = pX( i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
else
%%%%%%%%%%对应论文中的公式2,可参考原文研读%%%%%%%%%%%%%%%%%%%%
aaa= randperm(180,1);
if ( aaa==0 ||aaa==90 ||aaa==180 )
x( i , : ) = pX( i , :);
end
theta= aaa*pi/180;
x( i , : ) = pX( i , :)+tan(theta).*abs(pX(i , : )-XX( i , :)); % Equation (2)
end
x( i , : ) = Bounds( x(i , : ), lb, ub ); %对超过边界的变量进行去除
fit( i ) = fobj( x(i , : ) );%计算新的适应度值
end
[ fMMin, bestII ] = min( fit ); %
bestXX = x( bestII, : ); % 当前最优解
R=1-t/M; %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应论文中的公式3,可参考原文研读 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Xnew1 = bestXX.*(1-R);
Xnew2 =bestXX.*(1+R); %%% Equation (3)
Xnew1= Bounds( Xnew1, lb, ub ); %对超过边界的变量进行去除
Xnew2 = Bounds( Xnew2, lb, ub );%对超过边界的变量进行去除
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应论文中的公式5,可参考原文研读 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Xnew11 = bestX.*(1-R);
Xnew22 =bestX.*(1+R); %%% Equation (5)
Xnew11= Bounds( Xnew11, lb, ub );%对超过边界的变量进行去除
Xnew22 = Bounds( Xnew22, lb, ub );%对超过边界的变量进行去除
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应论文中的公式4,可参考原文研读 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = ( pNum + 1 ) :12 % Equation (4)
x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));
x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 ); %对超过边界的变量进行去除 注意此时上下界变为Xnew1 和Xnew2
fit(i ) = fobj( x(i,:) ) ;%计算新的适应度值
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应论文中的公式6,可参考原文研读 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 13: 19 % Equation (6)
x( i, : )=pX( i , : )+((randn(1)).*(pX( i , : )-Xnew11)+((rand(1,dim)).*(pX( i , : )-Xnew22)));
x(i, : ) = Bounds( x(i, : ),lb, ub);%对超过边界的变量进行去除
fit(i ) = fobj( x(i,:) ) ;%计算新的适应度值
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应论文中的公式7,可参考原文研读 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 20 : pop % Equation (7)
x( j,: )=bestX+randn(1,dim).*((abs(( pX(j,: )-bestXX)))+(abs(( pX(j,: )-bestX))))./2;
x(j, : ) = Bounds( x(j, : ), lb, ub );%对超过边界的变量进行去除
fit(j ) = fobj( x(j,:) ) ;%计算新的适应度值
end
% Update the individual's best fitness vlaue and the global best fitness value
XX=pX;
for i = 1 : pop
if ( fit( i ) < pFit( i ) )
pFit( i ) = fit( i );
pX( i, : ) = x( i, : );
end
if( pFit( i ) < fMin )
% fMin= pFit( i );
fMin= pFit( i );
bestX = pX( i, : );
% a(i)=fMin;
end
end
Convergence_curve(t)=fMin;
end
% Application of simple limits/bounds
function s = Bounds( s, Lb, Ub)
% Apply the lower bound vector
temp = s;
I = temp < Lb;
temp(I) = Lb(I);
% Apply the upper bound vector
J = temp > Ub;
temp(J) = Ub(J);
% Update this new move
s = temp;
function S = Boundss( SS, LLb, UUb)
% Apply the lower bound vector
temp = SS;
I = temp < LLb;
temp(I) = LLb(I);
% Apply the upper bound vector
J = temp > UUb;
temp(J) = UUb(J);
% Update this new move
S = temp;
%---------------------------------------------------------------------------------------------------------------------------
⛳️ 运行结果
🔗 参考文献
本程序参考以下中文EI期刊,程序注释清晰,干货满满。
[1] 孙美玲.基于遗传算法的无线传感器网络节点自身定位算法研究[D].中国石油大学[2023-12-03].DOI:10.7666/d.y1543533.
[2] 郑雪枫,王红,林畅,等.基于HYSYS模型和遗传算法的天然气液化流程参数优化[J].化学工程, 2014, 42(7):4.DOI:10.3969/j.issn.1005-9954.2014.07.014.