基于蜣螂算法DBO算法优化无线传感器布局优化附matlab实现

本文介绍了蜣螂算法改进的DBO算法如何优化无线传感器网络的传感器节点布局,提升覆盖效率和稳定性,通过模拟蜣螂行为解决WSN中的信号覆盖不均问题,展示了DBO在实际应用中的优势和前景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

无线传感器网络(WSN)是一种由大量分布在监测区域内的无线传感器节点组成的网络。这些传感器节点能够收集和传输环境数据,如温度、湿度、压力等。WSN在许多领域都有着广泛的应用,包括环境监测、军事监测、医疗保健等。

然而,WSN的性能往往受到传感器节点布局的影响。传感器节点的布局不合理会导致信号覆盖不均匀,影响数据采集的准确性和网络的稳定性。因此,如何优化传感器节点的布局成为了WSN研究领域的一个重要课题。

最近,一种基于蜣螂算法的DBO(Dung Beetle Optimization)算法被提出,用于优化WSN的覆盖问题。蜣螂算法是一种模拟蜣螂觅食行为的启发式算法,通过模拟蜣螂在寻找食物的过程中的行为,来寻找最优解。DBO算法则是在蜣螂算法的基础上,针对WSN的覆盖优化问题进行了改进和优化。

DBO算法通过模拟蜣螂在移动过程中的信息传递和协作行为,来优化WSN的传感器节点布局。在算法中,蜣螂被视为传感器节点,它们之间的信息交流和协作可以帮助优化整个网络的覆盖效果。通过迭代优化的过程,DBO算法能够找到最优的传感器节点布局,从而提高了WSN的覆盖效率和稳定性。

与传统的优化算法相比,DBO算法具有许多优势。首先,它能够充分考虑传感器节点之间的协作关系,从而更好地优化整个网络的覆盖效果。其次,DBO算法具有较强的全局搜索能力,能够快速找到最优解。此外,DBO算法还具有较强的鲁棒性,能够应对网络中传感器节点的故障和动态变化。

在实际的WSN应用中,DBO算法已经取得了一些令人瞩目的成果。通过将DBO算法应用于WSN的传感器节点布局优化问题,可以显著提高网络的覆盖效率和数据采集的准确性。同时,DBO算法还能够降低传感器节点的能耗,延长网络的寿命,从而降低了维护成本。

总的来说,基于蜣螂算法的DBO算法为WSN的覆盖优化问题提供了一种新的解决方案。通过模拟蜣螂在寻找食物的行为,DBO算法能够有效优化传感器节点的布局,提高了WSN的覆盖效率和稳定性。未来,随着WSN技术的不断发展和应用领域的拓展,DBO算法有望在WSN领域发挥更大的作用,为WSN的性能优化提供更多的可能性。

📣 部分代码

% -----------------------------------------------------------------------------------------------------------% Dung Beetle Optimizer: (DBO) (demo)% Programmed by Jian-kai Xue    % Updated 28 Nov. 2022.                     %% This is a simple demo version only implemented the basic         % idea of the DBO for solving the unconstrained problem.    % The details about DBO are illustratred in the following paper.    % (To cite this article):                                                %  Jiankai Xue & Bo Shen (2022) Dung beetle optimizer: a new meta-heuristic% algorithm for global optimization. The Journal of Supercomputing, DOI:% 10.1007/s11227-022-04959-6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qq群:439115722%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%pop是种群,M是迭代次数,fobj是用来计算适应度的函数%pNum:滚球蜣螂的数量   %需要注意的是种群的大小以及各个小种群的大小都是可以根据实际问题自行调整的function [fMin , bestX, Convergence_curve ] = DBO(pop, M,c,d,dim,fobj  )           P_percent = 0.2;    % 滚球蜣螂所占整个种群的比例       %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%pNum = round( pop *  P_percent );    %滚球蜣螂的数量  lb= c.*ones( 1,dim );    %下边界     a vectorub= d.*ones( 1,dim );    % 上边界     a vector%Initialization 初始化种群for i = 1 : pop        x( i, : ) = lb + (ub - lb) .* rand( 1, dim );      fit( i ) = fobj( x( i, : ) ) ;                       endpFit = fit;                       pX = x;  XX=pX;    [ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness valuebestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin % Start updating the solutions.for t = 1 : M                   [fmax,B]=max(fit);        worse= x(B,:); %全局最差位置         r2=rand(1);     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   %%%%%%%%%%%%%5%%%%%%这一部位为滚球蜣螂的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%    for i = 1 : pNum            if(r2<0.9)            r1=rand(1);          a=rand(1,1);          if (a>0.1)           a=1;          else           a=-1;          end    x( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)       else           %%%%%%%%%%对应论文中的公式2,可参考原文研读%%%%%%%%%%%%%%%%%%%%            aaa= randperm(180,1);           if ( aaa==0 ||aaa==90 ||aaa==180 )            x(  i , : ) = pX(  i , :);              end         theta= aaa*pi/180;                 x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)              end              x(  i , : ) = Bounds( x(i , : ), lb, ub );   %对超过边界的变量进行去除         fit(  i  ) = fobj( x(i , : ) );%计算新的适应度值    end  [ fMMin, bestII ] = min( fit );      %   bestXX = x( bestII, : );             % 当前最优解 R=1-t/M;                           % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应论文中的公式3,可参考原文研读   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Xnew1 = bestXX.*(1-R);      Xnew2 =bestXX.*(1+R);                    %%% Equation (3)   Xnew1= Bounds( Xnew1, lb, ub );   %对超过边界的变量进行去除    Xnew2 = Bounds( Xnew2, lb, ub );%对超过边界的变量进行去除        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%  对应论文中的公式5,可参考原文研读  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     Xnew11 = bestX.*(1-R);      Xnew22 =bestX.*(1+R);                     %%% Equation (5)   Xnew11= Bounds( Xnew11, lb, ub );%对超过边界的变量进行去除     Xnew22 = Bounds( Xnew22, lb, ub );%对超过边界的变量进行去除         %%%%%%%%%%%%%%%%%%%%%%%%%%%%  对应论文中的公式4,可参考原文研读  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      for i = ( pNum + 1 ) :12                  % Equation (4)     x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));   x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 ); %对超过边界的变量进行去除 注意此时上下界变为Xnew1 和Xnew2  fit(i ) = fobj(  x(i,:) ) ;%计算新的适应度值   end  %%%%%%%%%%%%%%%%%%%%%%%%%%%%  对应论文中的公式6,可参考原文研读  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   for i = 13: 19                  % Equation (6)           x( i, : )=pX( i , : )+((randn(1)).*(pX( i , : )-Xnew11)+((rand(1,dim)).*(pX( i , : )-Xnew22)));       x(i, : ) = Bounds( x(i, : ),lb, ub);%对超过边界的变量进行去除        fit(i ) = fobj(  x(i,:) ) ;%计算新的适应度值    end  %%%%%%%%%%%%%%%%%%%%%%%%%%%%  对应论文中的公式7,可参考原文研读  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   for j = 20 : pop                 % Equation (7)       x( j,: )=bestX+randn(1,dim).*((abs(( pX(j,:  )-bestXX)))+(abs(( pX(j,:  )-bestX))))./2;      x(j, : ) = Bounds( x(j, : ), lb, ub );%对超过边界的变量进行去除       fit(j ) = fobj(  x(j,:) ) ;%计算新的适应度值  end   % Update the individual's best fitness vlaue and the global best fitness value     XX=pX;    for i = 1 : pop         if ( fit( i ) < pFit( i ) )            pFit( i ) = fit( i );            pX( i, : ) = x( i, : );        end                if( pFit( i ) < fMin )           % fMin= pFit( i );           fMin= pFit( i );            bestX = pX( i, : );          %  a(i)=fMin;                    end    end       Convergence_curve(t)=fMin;        end% Application of simple limits/boundsfunction s = Bounds( s, Lb, Ub)  % Apply the lower bound vector  temp = s;  I = temp < Lb;  temp(I) = Lb(I);    % Apply the upper bound vector   J = temp > Ub;  temp(J) = Ub(J);  % Update this new move   s = temp;function S = Boundss( SS, LLb, UUb)  % Apply the lower bound vector  temp = SS;  I = temp < LLb;  temp(I) = LLb(I);    % Apply the upper bound vector   J = temp > UUb;  temp(J) = UUb(J);  % Update this new move   S = temp;%---------------------------------------------------------------------------------------------------------------------------

⛳️ 运行结果

🔗 参考文献

本程序参考以下中文EI期刊,程序注释清晰,干货满满。

[1] 孙美玲.基于遗传算法的无线传感器网络节点自身定位算法研究[D].中国石油大学[2023-12-03].DOI:10.7666/d.y1543533.

[2] 郑雪枫,王红,林畅,等.基于HYSYS模型和遗传算法的天然气液化流程参数优化[J].化学工程, 2014, 42(7):4.DOI:10.3969/j.issn.1005-9954.2014.07.014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值