【流体】基于matlab的流管分析、渗透率和色散计算

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

准确描述多孔介质中的非均质性对于理解和建模单相(例如,污染物运输,盐水入侵)和多相(例如,地质碳存储,提高石油采收率)运输问题至关重要。医学成像在实验上量化这些过程的应用已在材料表征和实验室规模的流体传输行为方面取得了重大进展。正电子发射断层扫描(PET)在癌症诊断和管理,心脏病学和神经病学中得到了广泛应用,但在地球科学中的应用却相对有限。这项研究利用小口径微型PET扫描仪对在两个非均质Berea砂岩岩心中进行单相和多相流动实验期间注入的保守水放射性示踪剂的脉冲进行成像和量化。将岩心离散成轴向平行的流管,并使用重建的微型PET数据,从空间矩分析中导出表达式,以计算子岩心示踪剂通量和孔隙水速度。使用通量和速度测量,可以根据体积通量平衡计算孔隙度和饱和度,并根据达西定律计算渗透率和水相对渗透率。通过第二空间矩分析,可以在单相和多相实验中测量子核溶质的弥散。建立了数值模拟模型以验证流管尺寸减小技术的假设。反应堆比率的变化作为诊断指标,可以有效地确定岩心和柱级实验中流管近似的有效性。这项研究引入了一种量化子岩心渗透率,相对渗透率和扩散的新方法。这些实验和分析方法为跨尺度运输行为差异的实验测量提供了基础

📣 部分代码

[qws] = scaled_injection_rate_function(qw, M0, vox_size, RF.diameter);

%% Step 5: Calculate tracer volumetric flow into each streamtube

[Qs, q_std, q_std_error]= streamtube_flow_function(M0, steady_frames, qws);

%% Step 6: Calculate streamtube porosity

% streamtube_por_and_sat_calc(streamtube velocity, streamtube flow rate, 

% voxel size (cm), number of fluid phases (1 for single phase and 2 for 

% multiphase--if 2 then the next variable must be matrix of streamtube 

% porosity, any variable that triggers plotting)

[Phi_s, phi_core] = streamtube_por_and_sat_function(Vs, Qs, vox_size, num_phases, 1);

%% Step 7: Calculate streamtube permeability

% perm_calc_function(streamtube velocity, streamtube porosity, rock

% and fluid properties, flow rate, pressure drop, plots 1=direct perm

%2=direct and velocity scaled perm, 3=direct, velocity, and velocity/neglecting porosity)

[K_md, kc_md, K_m2]= perm_calc_function(Vs, Phi_s, RF, qw, dP, 2);

%% Option for calculating longitudinal dispersion   

% [Alps, alpha_m] = streamtube_dispersivity_function(Xc, Sx, steady_frames, 0, 1);

⛳️ 运行结果

🔗 参考文献

[1] Zahasky C , Benson S M .Micro-Positron Emission Tomography for Measuring Sub-core Scale Single and Multiphase Transport Parameters in Porous Media[J].Advances in Water Resources, 2018, 115(MAY):1-16.DOI:10.1016/j.advwatres.2018.03.002.

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值