SLAM(Simultaneous Localization and Mapping,同时定位与建图)算法基础知识-----------持续更新

1. SLAM算法目的:机器人在没有先验知识的情况下,实时地构建周围环境的地图,并在地图上进行定位相较于视觉SLAM,激光SLAM研究时间更久,在理论、技术和产品落地上更成熟。对机器人和自动驾驶企业来说,激光SLAM仍是目前最稳定、最主流的定位导航方法.

2. 算法分类

2.1

如:EKF-SLAM(1987)扩展卡尔曼滤波器(EKF)、FastSLAM(2002)粒子滤波器、

2.2

如:Karto

2.3

如:T-LOAM(2021)、ORB-SLAM3(2021经典)是一种基于特征点的视觉SLAM算法、DynaSLAM、LSD-SLAM(2014)、DSO(2016)、 VINS-Mono(2018)、SVO(2014)、Cartegrapher(2016经典)

激光雷达:

  • LOAM系列,包括LOAM、LOAM-Velodyne、LOAM-LiDAR等

  • LIO-SAM(经典)

视觉slam算法-CSDN博客

机器人常用的几大主流SLAM算法-CSDN博客

3. 技术流程

机器人开发--SLAM详细介绍-CSDN博客

4. SLAM 模型的数学表示

5.应用:

6.方案选择

 参考:

SLAM 模型与算法概述_slam算法-CSDN博客SLAM技术详解及Python实现_slam算法-CSDN博客

一文彻底搞懂SLAM技术

SLAM技术详解:从扫地机器人到自动驾驶-CSDN博客

一文彻底讲清楚SLAM技术原理与应用

【SLAM】一文彻底讲清楚SLAM技术原理与应用-CSDN博客

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值