Python数据分析-Netflix数据分析和可视化

一、研究背景

在当今时代,流媒体技术迅猛发展,如风暴般席卷全球娱乐产业,重塑了大众的娱乐消费模式。Netflix 在这一潮流中一马当先,成为全球首屈一指的在线流媒体平台。自 2007 年开启流媒体服务后,Netflix 就马不停蹄地拓展内容库。其内容包罗万象,无论是紧张刺激的动作片、温馨感人的情感剧,还是充满奇幻色彩的科幻作品,都应有尽有。这一切都是为了匹配用户数量的快速增长,满足他们愈发多样和个性化的观看需求。如今,Netflix 订阅用户已超 2 亿,这一庞大数字凸显出优化内容获取与制作策略的紧迫性,它是 Netflix 继续领航的关键。

研究 Netflix 内容相关的各个方面,对于洞察现代消费者的娱乐偏好意义非凡。以 2008 - 2021 年 Netflix 新增内容数据为切入点,就像握住了理解流媒体行业发展的钥匙。这些数据能清晰展现行业发展脉络,比如从早期某类小众题材的尝试到后期成为流行趋势。同时,用户喜好的变化也一目了然,如对某种类型影片的热衷程度变化。而 Netflix 在竞争中找准自身定位的过程,也能从中洞察,为整个行业发展提供宝贵借鉴。

二、研究意义

本研究的意义体现在以下几个方面:

  1. 市场洞察:通过对Netflix内容的深入分析,可以揭示观众偏好的变化。这不仅能帮助流媒体平台识别哪些内容类型最受欢迎,还能揭示不同用户群体的特定需求。通过理解这些动态,流媒体平台及相关内容制作公司能够制定更具针对性的内容策略,以吸引和保持用户,最终推动订阅增长。

  2. 内容优化:分析不同类型内容的发布频率及受欢迎程度,为内容采购和制作决策提供数据支持。这种数据驱动的方法可以帮助平台优化其内容库,确保在提供热门内容的同时,保持多样性,以满足不同观众的偏好。例如,若某种类型的节目受到用户热捧,平台可以考虑增加该类型的制作预算或引进更多相关内容。

  3. 行业趋势:研究Netflix内容发布的趋势可以帮助理解流媒体行业的未来走向。通过分析不同类型内容的流行时间点和发布频率,行业参与者可以识别市场上潜在的机会和威胁。这种分析能够为内容策略的调整、市场扩展计划及竞争对手分析提供基础数据支持。

  4. 消费者行为:了解用户的观看习惯和内容偏好,对于提升用户体验、增加用户黏性具有重要作用。随着用户对个性化和定制化内容需求的上升,流媒体平台可以利用这些见解来改进推荐算法,提供更加精准的内容推送,提升用户满意度。此外,通过了解用户行为,平台还可以实施更有效的营销策略,吸引新用户并维持现有用户的活跃度。

  5. 竞争策略:流媒体市场竞争日益激烈,本研究可为Netflix在与其他平台的竞争中提供战略性见解。通过对内容发布趋势和用户偏好的分析,Netflix能够制定更灵活的市场进入和扩展策略,增强在内容获取和制作上的优势,从而保持市场领导地位。

  6. 内容创新:通过分析成功作品的共同特征,研究能够为内容制作提供灵感,促使创新和实验。了解观众偏好的变化能够激励创作者在剧本、导演风格及制作手法等方面进行创新,从而推出更具吸引力的原创内容。

三、实证分析

代码和数据集

Netflix 是一种流行的流媒体服务,提供大量电影、电视节目和原创内容。此数据集是原始版本的清理版本,可在此处找到。该数据包括 2008 年至 2021 年添加到 Netflix 的内容。最古老的内容可以追溯到 1925 年,最新的可以追溯到 2021 年。

导入数据分析包和读取数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文
plt.rcParams['axes.unicode_minus'] = False   #负号
import seaborn as sns
from wordcloud import WordCloud

import warnings
warnings.filterwarnings('ignore')

读取数据集, 查看前五行

data = pd.read_csv('netflix1.csv')
data.head()

查看数据集结构

查看数据集形状

num_rows, num_cols = data.shape
print("Shape of the Data:")
print(f"Number of Rows: {num_rows}")
print(f"Number of Columns: {num_cols}\n")

数据清洗
识别和处理缺失数据、更正数据类型并删除重复项。

# 将 'date_added' 转换为日期时间
data['date_added'] = pd.to_datetime(data['date_added'])

查看数据集类型

探索性数据分析 (EDA)
内容类型分发(电影与电视节目)
统计电影和电视节目的数量

type_counts = data['type'].value_counts()
# 设置图形质量参数以提高清晰度
plt.rcParams['savefig.dpi'] = 400
plt.rcParams['figure.dpi'] = 400
plt.rcParams['agg.path.chunksize'] = 10000
plt.figure(figsize=(20, 8),dpi=200)
# 第一个子图:柱状图
plt.subplot(1, 2, 1)
sns.barplot(x=type_counts.index, y=type_counts.values, palette='Set2')
plt.title('内容类型分布', fontsize=25)
plt.xlabel('类型', fontsize=20)
plt.ylabel('数量', fontsize=20)
# 第二个子图:饼图
plt.subplot(1, 2, 2)
plt.pie(type_counts, labels=type_counts.index, autopct='%.0f%%', colors=sns.color_palette('Set2'))
plt.title('内容类型百分比分布', fontsize=25)
plt.show()

分级频率(电影与电视节目)

plt.figure(figsize=(20, 8))
# 第一个子图:柱状图
plt.subplot(1, 2, 1)
sns.barplot(x='rating', y='count', data=ratings, palette='plasma')
plt.xticks(rotation=45, ha='right', fontsize=16)
plt.xlabel("评价类型", fontsize=20)
plt.ylabel("评价频率", fontsize=20)
plt.title('评价分布', fontsize=25)
plt.grid(True, which='both', linestyle='--', linewidth=0.3)
# 第二个子图:饼图
plt.subplot(1, 2, 2)
plt.pie(ratings['count'][:8], labels=ratings['rating'][:8], autopct='%.0f%%', colors=sns.color_palette('plasma'))
plt.title('评价百分比分布', fontsize=25)
plt.show()

 

 内容最多的 10 个国家

头衔最多的前 15 名导演

# 绘制图形
    plt.figure(figsize=(20, 8))
    sns.barplot(y='director', x='count', data=top_directors, palette='plasma')
    plt.title('拥有最多作品的前 15 位导演', fontsize=25)
    plt.xlabel('作品数量', fontsize=20)
    plt.ylabel('导演', fontsize=20)
    plt.xticks(rotation=45, ha='right', fontsize=22)  # 增大 x 轴字体大小
# 增大 y 轴字体大小
    plt.yticks(fontsize=22)
    plt.grid(True, which='both', linestyle='--', linewidth=0.3)
    plt.show()
except KeyError as e:
    print(f"数据框中没有名为 '{e.args[0]}' 的列。")

 

 十大流行电影类型

popular_movie_genre = data[data['type'] == 'Movie'].groupby("listed_in").size().sort_values(ascending=False)[:10]
popular_series_genre = data[data['type'] == 'TV Show'].groupby("listed_in").size().sort_values(ascending=False)[:10]
plt.figure(figsize=(20, 8))
sns.barplot(x=popular_movie_genre.index, y=popular_movie_genre.values, palette='Blues_d')
plt.xticks(rotation=45, ha='right', fontsize=16)
plt.xlabel("电影类型", fontsize=20)
plt.ylabel("电影数量", fontsize=20)
plt.suptitle("电影最受欢迎的十大类型", fontsize=25)
plt.xticks(rotation=45, ha='right', fontsize=22)  # 增大 x 轴字体大小
# 增大 y 轴字体大小
plt.yticks(fontsize=22)
plt.show()

  前 10 名电视节目类型

 电影和电视节目的每月发布

plt.figure(figsize=(20, 8))
data.groupby(['month_added', 'type']).size().unstack().plot(kind='line', marker='o', ax=plt.gca())
plt.title('每月电影和电视剧发布情况', fontsize=25)
plt.xlabel('月份', fontsize=20)
plt.ylabel('数量', fontsize=20)
plt.xticks(fontsize=20)
plt.xticks(fontsize=20)
plt.legend(title='类型', fontsize=20)
plt.grid(True)
plt.show()

电影和电视节目的年度发行 

plt.figure(figsize=(20, 8))
data.groupby(['year_added', 'type']).size().unstack().plot(kind='line', marker='o', ax=plt.gca())
plt.title('电影和电视剧的年度发布情况', fontsize=25)
plt.xlabel('年份', fontsize=20)
plt.ylabel('数量', fontsize=20)
plt.xticks(fontsize=20)
plt.xticks(fontsize=20)
plt.legend(title='类型', fontsize=20)
plt.grid(True)
plt.show()

电影标题的词云图

plt.figure(figsize=(20, 10))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('电影标题词云', fontsize=25)
plt.show()

 通过这项分析,我们获得了对 Netflix 数据集的宝贵见解。我们探讨了内容类型、类型和导演的分布,以及内容发布随时间推移的趋势。该分析的结果可用于为内容获取和制作策略提供信息,以及确定增长和改进的机会。

四、研究结论

通过本次分析,我们得出了以下关键结论:

  1. 内容类型分布:Netflix的大部分内容为电视节目,且随着时间推移,电视节目的发行量显著增加,反映出用户对系列剧的偏好。

  2. 稳定的电影发布:尽管电影是第二常见的内容类型,其发行量保持相对稳定,这表明电影仍然在用户观看习惯中占有重要地位。

  3. 热门类型识别:纪录片、电视剧和喜剧是用户最偏好的类型,这为Netflix在内容制作和采购时的重点方向提供了参考。

  4. 导演与内容关联:顶级导演的作品主要集中在电视节目上,这表明高质量内容的创作与导演的知名度密切相关。

  5. 持续增长的发布趋势:内容发布数量呈显著增长趋势,特别是在2021年出现显著峰值,显示出Netflix对内容扩展的重视。

  6. 内容多样性的体现:电影标题的词云图展示了Netflix内容的丰富性和多样性,反映出平台在满足不同观众需求方面的努力。

这些结论不仅对Netflix自身的内容策略具有指导意义,也为其他流媒体平台及内容制作公司提供了宝贵的参考。通过持续关注用户需求和市场趋势,Netflix有望继续巩固其在流媒体行业的领导地位。

著名的Netflix 智能推荐 百万美金大奖赛使用是数据集. 因为竞赛关闭, Netflix官网上已无法下载. Netflix provided a training data set of 100,480,507 ratings that 480,189 users gave to 17,770 movies. Each training rating is a quadruplet of the form . The user and movie fields are integer IDs, while grades are from 1 to 5 (integral) stars.[3] The qualifying data set contains over 2,817,131 triplets of the form , with grades known only to the jury. A participating team's algorithm must predict grades on the entire qualifying set, but they are only informed of the score for half of the data, the quiz set of 1,408,342 ratings. The other half is the test set of 1,408,789, and performance on this is used by the jury to determine potential prize winners. Only the judges know which ratings are in the quiz set, and which are in the test set—this arrangement is intended to make it difficult to hill climb on the test set. Submitted predictions are scored against the true grades in terms of root mean squared error (RMSE), and the goal is to reduce this error as much as possible. Note that while the actual grades are integers in the range 1 to 5, submitted predictions need not be. Netflix also identified a probe subset of 1,408,395 ratings within the training data set. The probe, quiz, and test data sets were chosen to have similar statistical properties. In summary, the data used in the Netflix Prize looks as follows: Training set (99,072,112 ratings not including the probe set, 100,480,507 including the probe set) Probe set (1,408,395 ratings) Qualifying set (2,817,131 ratings) consisting of: Test set (1,408,789 ratings), used to determine winners Quiz set (1,408,342 ratings), used to calculate leaderboard scores For each movie, title and year of release are provided in a separate dataset. No information at all is provided about users. In order to protect the privacy of customers, "some of the rating data for some customers in the training and qualifyin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值