YOLOv8全网独家改进: 红外小目标 | 注意力机制改进 | 并行化注意力设计(PPA)模块,红外小目标暴力涨点| 2024年3月最新成果

本文介绍了如何将并行化patch-aware注意力(PPA)模块应用于YOLOv8,以提升红外小目标检测性能。通过PPA、DASI和MDCR模块,解决小目标识别难题。详细阐述了PPA模块结构,并提供了代码整合到YOLOv8的步骤,以及模型配置文件更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡💡💡本文独家改进:红外小目标涨点利器,在多个数据集下进行验证,并行化 patch-aware 注意力(PPA)模块,解决目标的大小微小以及红外图像中通常具有复杂的背景的问题点,2024年3月最新成果

  💡💡💡红外小目标实现暴力涨点,只有几个像素的小目标识别率大幅度提升

改进结构图如下:


收录

YOLOv8原创自研

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值