YOLOv9改进策略:注意力机制 | 二阶通道注意力机制(Second-order Channel Attention,SOCA),实现单图超分效果

本文介绍了YOLOv9框架,并探讨了如何将Second-order Channel Attention (SOCA)机制应用于YOLOv9中,以提升小目标检测性能。通过在YOLOv9的backbone中引入SOCA,实现了单图超分辨率效果,并在NEU-DET数据集上验证了性能提升。同时,文章提供了相关代码和结构图,适用于红外、小目标检测等多个场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡💡💡本文改进内容:CVPR_2019 SOCA注意力,一种基于二阶通道注意力机制,能够单幅图像超分辨率,从原理角度分析能够在小目标检测领域实现大幅涨点效果!!!

💡💡💡在NEU-DET数据集上进行验证,能够实现涨点!!!

​​yolov9-c-SOCA summary: 969 layers, 51012677 parameters, 51012645 gradients, 238.9 GFLOPs

 改进结构图如下:

 《YOLOv9魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值