RT-DETR手把手教程:loss优化 | 一种新的自适应阈值焦点损失函数loss,更多的注意力分配给目标特征,助力红外小目标暴力涨点

本文针对红外小目标检测中的目标与背景不平衡问题,提出自适应阈值焦点损失(ATFL),通过解耦目标和背景并调整损失权重,使模型更关注目标特征。实验证明,该方法能显著提高红外小目标检测性能,且易于集成到RT-DETR中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   💡💡💡问题点:注意到红外小目标图像中目标与背景之间存在极大的不平衡,这使得模型更加关注背景特征而不是目标特征

 💡💡💡解决对策:提出了一种新的自适应阈值焦点损失函数该函数将目标和背景解耦,并利用自适应机制来调整损失权重,迫使模型将更多的注意力分配给目标特征。

 💡💡💡在红外小目标数据集上暴力涨点,涨点近三个点。

 

### RT-DETR 模型中损失函数实现解释 #### 1. 损失函数概述 RT-DETR一种高效的目标检测模型,在其训练过程中,损失函数起着至关重要的作用。为了优化边界框预测的质量并提高整体性能,引入了多种改进版 IoU (Intersection over Union) 损失函数,如 GIoU、DIoU、CIoU 和 WIoU 等[^2]。 #### 2. 原始 IoU 及其局限性 原始的 IoU 计算两个矩形区域之间的交集面积除以它们的并集面积。然而,这种简单的度量方式存在一些不足之处: - 当预测框与真实框完全不重叠时,IoU 的值始终为零; - 对于不同形状和大小的对象,仅依赖 IoU 不足以全面评估定位准确性; 因此,研究人员提出了多个变体来弥补这些问题。 #### 3. 改进后的 IoU 类似物及其优势 以下是几种常见的改进版本以及各自的特- **GIoU**: Generalized Intersection Over Union 考虑到了包围两者的最小闭包区域,从而解决了当两者无重合部分时无法衡量距离的问题。 - **DIoU**: Distance-IoU Loss 加入了中心间的欧几里得距离作为惩罚项,有助于加速收敛过程,并改善对于尺度变化较大的物体检测效果。 - **CIoU**: Complete IoU 综合考虑了上述因素外还加入了宽高比例差异的影响因子,使得该方法能够更好地处理极端情况下的目标定位问题。 - **WIoU**: Weighted IoU 则进一步通过加权的方式调整各个维度的重要性权重,提高了对不同类型数据分布下表现的一致性和鲁棒性[^3]. #### 4. PyTorch 中的具体实现 在 PyTorch 下面可以这样定义一个基于 CIoU 或者其他类型的 IoU 损失函数用于 RT-DETR: ```python import torch.nn.functional as F from torchvision.ops import box_iou def ciou_loss(boxes1, boxes2): """Compute the CIOU loss between two sets of bounding boxes.""" ious = box_iou(boxes1, boxes2).diag() cious = compute_ciou_term(boxes1, boxes2) return 1 - ious + cious def compute_ciou_term(b1, b2): # Compute terms required for complete IOU calculation here... pass loss[name_giou] = 1.0 - detr_bbox_iou(pred_bboxes, gt_bboxes, xywh=True, WIoU=True) ``` 这段代码展示了如何构建一个自定义的 `ciou_loss` 函数,并将其应用于 RT-DETR 模型中的边界框回归任务上。注意实际应用时还需要补充具体的细节逻辑到辅助函数 `compute_ciou_term()` 内部去完成完整的 CIoU 计算流程。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值