Yolov8-pose关键点检测:SPPF优化 | 新一代高效可形变卷积DCNv4如何做二次创新?高效结合SPPF

本文介绍了DCNv4的改进,包括更快的收敛速度、更高的性能和效率,以及与YOLOv8-pose的高效结合。DCNv4通过消除softmax归一化和优化内存访问,实现了性能和速度的大幅提升,适用于关键点检测等视觉任务。此外,文章还展示了如何在YOLOv8-pose中整合DCNv4_SPPF的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡本文独家改进:DCNv4更快收敛、更高速度、更高性能,与YOLOv8 SPPF高效结合,二次创新助力涨点

    YOLOv8-Pose关键点检测专栏介绍:http://t.csdnimg.cn/gRW1b

✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集;

🚀🚀🚀模型性能提升、pose模式部署能力;

🍉🍉🍉应用范围:工业工件定位、人脸、摔倒检测等支持各个关键点检测;

1.DCNv4介绍 

### 集成DCNv4YOLOv8SPPF模块 在YOLOv8架构中引入可变形卷积网络第四版(DCNv4),能够增强模型的空间采样灵活性,从而提升特征提取能力。为了将DCNv4集成到空间金字塔池化(SPP)跟随层融合(Follow Fusion, SPPF),需修改原有框架中的相应部分。 #### 修改配置文件 首先,在定义网络结构时应调整配置文件以适应新组件加入的要求[^1]: ```yaml # yolov8_custom.yaml backbone: ... neck: sppf: type: CustomSPPFWithDCNV4 dcn_version: 'v4' ... ``` #### 自定义SPPF类 接着创建自定义`CustomSPPFWithDCNV4`类来替代默认版本,并在此基础上添加对DCNv4的支持: ```python import torch.nn as nn from models.common import Conv from utils.general import make_divisible class DeformConv2dV4(nn.Module): """A simplified implementation of deformable convolution v4.""" def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=True): super().__init__() self.kernel_size = kernel_size self.padding = padding self.stride = stride # Define offset and mask generation layers here based on DCNv4 specifications. ... class CustomSPPFWithDCNV4(nn.Module): """ Spatial Pyramid Pooling - Fast (SPPF) layer with integrated DCNv4 for YOLOv8. Args: c1 (int): Number of input channels. c2 (int): Number of output channels. k (Union[int, tuple]): Kernel size(s). e (float): Expansion ratio used to calculate hidden dimension from `c1`. """ def __init__(self, c1, c2, k=(5,), e=0.5): super().__init__() c_ = int(make_divisible(c2 * e)) self.cv1 = Conv(c1=c1, c2=c_, k=k[0], s=1) # Replace standard convolutions within the SPP block by DCNv4 instances. self.dconv = DeformConv2dV4( inc=c_, outc=c_, kernel_size=k[-1], padding=k[-1] // 2, stride=1, bias=False, modulation=True ) self.act = nn.ReLU(inplace=True) self.pool_adds = sum([k ** 2 for k in k]) / len(k)**2 def forward(self, x): y = self.cv1(x) return self.act(y + self.dconv(y)) * math.sqrt(self.pool_adds) ``` 上述代码展示了如何通过继承并扩展原始SPPF类的方式融入最新的可变形卷积技术——即DCNv4。注意这里仅提供了一个简化版的`DeformConv2dV4`实现;实际应用中可能还需要根据具体需求进一步优化该函数内部逻辑以及参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值