YOLO11涨点优化:卷积魔改 | 可变形大核注意力,一种采用大卷积核来充分理解体积上下文的简化注意力机制

   💡💡💡本文独家改进:可变形大核注意力(D-LKA Attention),采用大卷积核来充分理解体积上下文的简化注意力机制,来灵活地扭曲采样网格,使模型能够适当地适应不同的数据模式

D-LKA Attention |   亲测在多个数据集能够实现大幅涨点

改进结构图如下,提供多种改进方式:

  《YOLOv11魔术师专栏》将从以下各个方向进行创新:

链接:

### YOLOv10 中卷积尺寸 在YOLOv10中,为了提升模型性能并适应不同应用场景的需求,引入了几种新型的卷积方法,其中包括ODConv(全维度动态卷积)和AKConv(可卷积)。这些新类型的卷积操作不仅变了传统意义上固定小的卷积概念,还赋予了卷积更多的灵活性。 对于传统的卷积层而言,通常采用的是3x3或5x5这样的标准尺寸。然而,在YOLOv10里: - **ODConv** 并不局限于特定的尺寸,而是通过自适应机制根据输入特征图的不同位置动态调整卷积权重[^1]。 - **AKConv** 则进一步突破了这一界限,允许定义任意形状和小的卷积。这意味着不仅可以设置常见的方形卷积窗口,还可以创建圆形、菱形或其他复杂几何结构作为卷积区域,并且能够处理不同尺度的信息提取需求[^3]。 因此,在YOLOv10框架下讨论具体的卷积“尺寸”变得不再那么绝对,因为这两个先进的卷积技术使得卷积过程中的采样模式变得更加多样化和灵活化。 ```python import torch.nn as nn class ODConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super(ODConv, self).__init__() # Implementation details of Omni-Dimensional Dynamic Convolution class AKConv(nn.Module): def __init__(self, in_channels, out_channels, sample_shape=None): super(AKConv, self).__init__() # Implementation allowing arbitrary sampling shapes and sizes ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值