YOLO11改进-注意力-引入自集成注意力机制SEAM解决遮挡问题

            本篇文章将介绍一个新的改进机制——SEAM,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析SEAM他做了什么,SEAM(Self-Ensembling Attention Mechanism)是一种自集成注意力机制,通过多视角特征融合和一致性正则化来增强模型的鲁棒性和泛化能力,特别适用于处理遮挡问题和多尺度特征融合随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。

代码:https://github.com/tgf123/YOLOv8_improve/blob/master/YOLOv11.md

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值