YOLO11涨点优化:loss优化 |一种新的自适应阈值焦点损失函数loss,更多的注意力分配给目标特征,助力红外小目标暴力涨点

   💡💡💡问题点:注意到红外小目标图像中目标与背景之间存在极大的不平衡,这使得模型更加关注背景特征而不是目标特征

 💡💡💡解决对策:提出了一种新的自适应阈值焦点损失函数该函数将目标和背景解耦,并利用自适应机制来调整损失权重,迫使模型将更多的注意力分配给目标特征。

 💡💡💡在红外小目标数据集上暴力涨点,涨点近三个点。

 《YOLOv11魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改

### YOLOv11 Loss Function Explanation and Issues In discussing the YOLOv11 model's loss function, one must consider that as of now, there has not been an official release or detailed documentation specifically about "YOLOv11". However, based on trends observed in previous iterations such as YOLOv3 to YOLOv8, certain assumptions can be made regarding advancements in the loss functions used within these models. The typical structure of a YOLO loss function includes components like localization error, objectness classification errors, and class probability scores. For instance, earlier versions utilized sum-squared error over bounding box coordinates which was found less effective due to treating errors equally regardless of box size [^1]. Improvements have since involved weighted losses where larger boxes contribute proportionally more than smaller ones towards total error. For hypothetical future versions including what might become known as YOLOv11, enhancements could focus further on addressing common issues: - **Localization Precision**: Introducing IoU (Intersection Over Union)-based metrics directly into training objectives rather than just coordinate differences. - **Class Imbalance Handling**: Implementing focal loss instead of binary cross entropy for better handling imbalanced datasets by down-weighting easy examples during backpropagation. - **Object Confidence Scoring**: Refining confidence scoring mechanisms possibly through GIoU (Generalized Intersection Over Union), DIoU (Distance-IoU), CIoU (Complete-IoU) variants depending upon specific application needs. Given this progression pattern seen across prior releases, any next iteration would likely continue refining these aspects while potentially incorporating novel techniques emerging from research communities focused on improving detection accuracy and efficiency. ```python def yolo_loss(predictions, targets): """ A simplified representation of how a potential YOLOv11 loss function may look, integrating various improvements discussed above. Args: predictions: Model output tensor containing predicted values. targets: Ground truth labels corresponding to each prediction. Returns: Total computed loss value combining multiple factors. """ # Localization component using CIoU loss ciou_loss = compute_ciou_loss(predictions[..., :4], targets[..., :4]) # Class imbalance handled via Focal Loss cls_focal_loss = focal_loss(predictions[..., 5:], targets[..., 5:]) # Object presence/absence determined with Binary Cross Entropy obj_bce_loss = bce_loss(predictions[..., 4], targets[..., 4]) return ciou_loss + cls_focal_loss + obj_bce_loss ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值