YOLO11涨点优化:轻量化卷积魔改 | 动态卷积DynamicConv ,CVPR2024 ParameterNet,低计算量小模型也能从视觉大规模预训练中获益

💡💡💡问题点:大规模视觉预训练显著提高了大型视觉模型的性能即现有的低FLOPs模型不能从大规模的预训练中获益

 💡💡💡解决对策:ParameterNet,旨在增加大规模视觉预训练模型中的参数数量,同时最小化FLOPs的增加,利用动态卷积将额外的参数合并到网络中

💡💡💡动态卷积引入到YOLO11:1) DynamicConv;2)DynamicConv+Bn+Act;

使用方法:直接代替YOLO11中的卷积;

 💡💡💡在多个数据集上涨点的前提下,原始6.4 GFLOPs降低至4.7 GFLOPs,具体实验性能如下表

YOLO1
### DynamicConv in Neural Networks Architecture and Implementation DynamicConv, also known as dynamic convolution or deformable convolutions, represents an advanced technique designed to enhance the flexibility of convolutional layers within neural networks. Traditional convolution operations apply fixed kernels over input features, whereas DynamicConv allows these kernels' positions to adapt dynamically based on learned offsets. In terms of architecture design, DynamicConv introduces additional parameters that control how each kernel moves across spatial dimensions during feature extraction[^2]. This approach enables models to better capture geometric transformations present in data without requiring explicit augmentation techniques. For instance, when applied to image processing tasks such as object detection or segmentation, this mechanism can improve performance by accommodating variations like scale changes, rotations, and translations more effectively than standard methods do. For implementation purposes, integrating DynamicConv into existing frameworks typically involves modifying conventional convolution implementations so they support offset predictions alongside regular weight updates. A common practice includes adding extra branches responsible for generating per-pixel displacement vectors which guide where filters should focus their attention next while maintaining computational efficiency through efficient algorithms and hardware acceleration options provided by modern libraries. An example code snippet demonstrating part of a PyTorch-based DynamicConv layer could look something like: ```python import torch.nn.functional as F from torch import nn class DynamicConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(DynamicConv, self).__init__() self.offset_conv = nn.Conv2d(in_channels=in_channels, out_channels=kernel_size * kernel_size * 2, # 2 coordinates per point kernel_size=kernel_size, stride=stride, padding=padding) self.regular_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding) def forward(self, x): offset = self.offset_conv(x) output = F.grid_sample(input=x, grid=self._generate_grid(offset), align_corners=True) return self.regular_conv(output) @staticmethod def _generate_grid(offsets): batch_size, _, height, width = offsets.size() y_range = torch.linspace(-1, 1, steps=height).view(1, -1, 1, 1).expand(batch_size, -1, width, 1) x_range = torch.linspace(-1, 1, steps=width).view(1, 1, -1, 1).expand(batch_size, height, -1, 1) base_grid = torch.cat([x_range, y_range], dim=-1).to(offsets.device) return (base_grid + offsets.permute(0, 2, 3, 1)).contiguous() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值