YOLO11热力图可视化:引入多种可视化CAM方法,为科研保驾护航

   💡💡💡本文内容:调用pytorch下的CAM可视化库,支持十多种可视化方法,打开“黑盒”,让YOLO11变得相对可解释性

  《YOLOv11魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 【小目标性能提升】前沿论文分享】【训练实战篇】

订阅者通过添加WX: AI_CV_0624,入群沟通,提供改进结构图等一系列定制化服务。

定期向订阅者提供源码工程&#x

### 使用YOLOv11生成力图 对于YOLOv11模型而言,生成力图的过程遵循类似的逻辑:将模型预测的结果转化为可视化的形式以便于理解和分析。具体来说,这一过程涉及几个关键技术环节。 #### 转换预测结果至力图格式 为了使YOLOv11的输出能够被直观展示,在获得目标检测框之后,需要计算这些边界框中心点的位置分布情况,并以此为基础构建度矩阵[^1]。此步骤可以通过统计各个区域内的对象数量并映射到特定的颜色强度上来完成。 ```python import numpy as np from PIL import Image, ImageDraw def create_heatmap(detections, image_size=(640, 640)): heatmap = np.zeros(image_size[::-1], dtype=np.float32) for detection in detections: box_center_x = (detection['xmin'] + detection['xmax']) / 2 box_center_y = (detection['ymin'] + detection['ymax']) / 2 # Normalize coordinates to fit the heatmap size x = int(box_center_x * heatmap.shape[1]) y = int(box_center_y * heatmap.shape[0]) if 0 <= x < heatmap.shape[1] and 0 <= y < heatmap.shape[0]: heatmap[y][x] += 1 max_value = np.max(heatmap) if max_value != 0: heatmap /= max_value return heatmap ``` #### 叠加力图与原始图片 一旦得到了基于YOLOv11预测结果制作而成的力图数据,下一步就是将其融合回源图像之上形成最终视觉效果。这通常涉及到调整透明度以及选择合适的色彩方案使得重叠后的图形既清晰又具有良好的对比度。 ```python def overlay_heatmap_on_image(original_img_path, heatmap_array): img = Image.open(original_img_path).convert('RGBA') # Convert heatmap array into an RGB image with a colormap applied. cmap = plt.get_cmap('jet') # Choose any matplotlib colormap here. rgba_heatmap = cmap(heatmap_array) heat_map_pil = Image.fromarray((rgba_heatmap[:, :, :3]*255).astype(np.uint8)).resize(img.size) result = Image.blend(img, heat_map_pil.convert("RGB"), alpha=0.7) return result ``` 上述代码片段展示了如何利用Python中的PIL库和Matplotlib库来处理图像文件,并实现了基本的功能需求——即创建一个可以反映物体密集程度的地图并与实际拍摄的照片相结合。 请注意,由于当前关于YOLOv11的具体实现细节尚未公开广泛讨论,因此这里提供的指导主要依据已知版本(如YOLOv8)的工作流程进行了合理推测和改编。如果存在官方文档或其他权威资料,则应优先参照那些资源来进行开发工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值