目录
普通大学人工智能本科生如何通过实习、项目实践或自学提升进入大模型公司的技能和经验?
哪些高校和培训机构提供了针对AI大模型技术的课程,并有哪些实习和项目实践机会?
在AI大模型领域,普通大学人工智能本科生面临的最大挑战是什么?
在中国普通大学的人工智能本科生是否具备进入大模型公司的能力以及是否有岗位,需要从多个角度进行分析。
从就业市场的需求来看,AI大模型领域对技术人才的需求非常旺盛。根据2024年的数据,中国高校毕业生人数创历史新高,达到1179万人,而AI大模型相关岗位的需求也在迅速增加。尽管整体就业形势严峻,但AI大模型领域的技术岗位需求旺盛,薪资水平持续走高。这意味着,尽管竞争激烈,但有志于从事AI大模型相关工作的毕业生仍有机会获得高薪岗位。
然而,大模型相关岗位对学历和经验的要求较高。例如,某些职位要求应聘者具备3-5年的工作经验,精通Java和熟悉TensorFlow/PyTorch等技术。此外,硕士及以上学历在某些岗位上更为优先。这表明,普通大学的人工智能本科生可能需要通过实习、项目实践或自学等方式提升自己的技能和经验,以满足这些岗位的要求。
尽管如此,高校和培训机构正在积极开设相关课程,并提供实习和项目实践机会,以培养具备大模型技术能力的人才。这意味着,通过系统的学习和实践,普通大学的人工智能本科生仍有机会掌握必要的技能,并进入大模型公司工作。
此外,大模型行业对复合型人才的需求也在增加。这类人才不仅需要具备AI技术能力,还需了解特定行业的数据特征和挑战。因此,普通大学的人工智能本科生可以通过跨学科学习和实践经验积累,提高自身在特定行业中的应用能力,从而增加就业竞争力。
尽管中国普通大学的人工智能本科生面临一定的挑战,但通过系统学习、积累实践经验以及不断提升自身技能,他们完全有能力进入大模型公司工作,并找到合适的岗位。
2024年中国AI大模型领域对技术人才的具体需求是什么?
2024年中国AI大模型领域对技术人才的具体需求主要集中在以下几个方面:
-
专业人才短缺:中国AI大模型行业面临专业人才短缺的问题,尤其是在AI芯片产业方面存在明显差距,且受国际政治格局影响,无法获得顶尖AI芯片出口。此外,技术人员缺乏商业洞察力,执行层面的员工不了解技术原理,而领导层则缺乏足够的技术理解。
-
高质量数据获取困难:中国在获取高质量数据方面面临挑战,尤其是中文语料的短缺。国内AI大模型数据主要来自互联网、电商、社交、搜索等渠道,存在数据类型不全面,信息可信度不高等问题。
-
计算资源不足:随着AI大模型规模呈现指数级增长,训练大模型越发依赖高性能AI芯片,但国内高性能芯片市场受进口限制和国内技术瓶颈的双重影响,导致算力层面的一些制约。
-
技能升级与重塑:科技人才日益注重技能升级与重塑,新兴技术的颠覆性创新冲击着职场,引发了人们对技能升级及重塑的思考与讨论。建议雇主继续投资并优化全面的培训项目,强化或提升员工技能,构建企业适应市场变化的能力。
-
行业应用需求:AI大模型赋能一般通用业务场景和行业应用场景,企业需求特征表现为价格、私密安全性和大模型能力效果的平衡。金融、电商、教育和医疗领域是未来五年潜力最高的四大下游行业领域。
-
人才培养与储备:当前AI大模型仍处于发展初期,各国都在积极布局AI人工智能领域的发展,人才自然成为各国首要争夺和储备的生产要素资源。我国应积极加快针对AI领域的人才培养,做好人才储备工作,避免未来人才的缺失或流失。
-
多模态整合能力与自监督学习:行业大模型的发展趋势包括模型规模增加、多模态整合能力、自监督学习兴起、可解释性与公平性关注、部署策略优化及特定领域定制化。
中国AI大模型领域对技术人才的需求不仅限于传统的AI技术人才,还包括具备商业洞察力、能够处理高质量数据、掌握高性能计算资源、具备持续学习和技能升级能力的人才。
普通大学人工智能本科生如何通过实习、项目实践或自学提升进入大模型公司的技能和经验?
普通大学人工智能本科生可以通过以下几种方式提升进入大模型公司的技能和经验:
-
实习机会:
- 学生可以利用假期或课余时间寻找与人工智能相关的实习岗位,例如在制造商、医疗、汽车和软件公司等。通过实习,学生不仅可以获得实际工作经验,还能了解行业需求和工作流程,从而提升自己的专业能力。
- 实习期间,学生应积极参与项目开发,并撰写详细的实习报告,以展示自己的工作成果和学习心得。
-
项目实践:
- 参与学校或企业提供的项目实践课程,如智能机器人流程自动化「RPA+AI」技术前沿与应用场景实训课程,可以帮助学生掌握大模型的基本原理和应用。
- 在项目实践中,学生可以学习如何部署和微调开源大模型,如ChatGLM2-6B模型,并构建本地知识库。这些技能对于进入大模型公司非常重要。
-
自学与在线课程:
- 学生可以通过在线平台如南洋理工大学提供的职业发展实训营,学习人工智能和商业领域的实践与行业经验。这类课程通常由资深专家授课,能够提供专业的指导和反馈。
- 自学过程中,学生应注重提升编程能力,熟悉常用的编程语言(如Python、Java、C++)和机器学习框架(如TensorFlow、PyTorch)。此外,还需掌握数据分析、统计学、算法优化和性能调优等技能。
-
参与科研项目:
- 学生可以参与高校或企业的科研项目,如与华为合作的AI模型迁移技术项目,负责开发迁移算法SDK并提升无线业务性能指标。通过这些项目,学生可以积累宝贵的科研经验,并产出论文和专利。
- 参与产学研工作,如在南京智谷人工智能研究院进行的研究,有助于学生了解人工智能在传统行业的应用。
-
通用技能培养:
- 高等教育机构应开发培训课程,帮助学生掌握通用技能,如提示工程、输出验证和偏见检测。这些技能对于使用大型语言模型AI系统至关重要。
- 学生应注重培养沟通和团队合作能力,这对于在大模型公司中有效协作非常重要。
哪些高校和培训机构提供了针对AI大模型技术的课程,并有哪些实习和项目实践机会?
以下高校和培训机构提供了针对AI大模型技术的课程,并有相关的实习和项目实践机会:
-
深圳信息职业技术学院:
- 课程内容:该学院举办了AIGC技术与大模型应用实战培训,涵盖大模型工具的基本使用、LangChain应用、实战案例与实操练习,以及大模型原理和深度学习原理的理论学习。
- 实习与项目实践机会:学员将通过项目演练和成果汇报来巩固所学知识,全面掌握大模型工具与原理,为实际工作应用打下基础。
-
合肥华斯泰生物医学科技有限公司:
- 课程内容:该公司主办了ChatGPT/GPT4科研应用与AI绘图培训班,深入探索大模型在科研领域的应用与实践。
- 实习与项目实践机会:主讲专家来自中国科学院、清华大学等科研机构,具有丰富的AI人工智能项目经验,长期为多个高校和企业提供内训及项目合作。
-
京东北京总部:
- 课程内容:提供大模型应用与提示工程实践培训项目,旨在让教师了解大模型的发展现状和基本原理,掌握文生文、文生图的提示词方法与技巧。
- 实习与项目实践机会:通过学习,教师将能够应用大模型进行数据分析,并了解大模型应用开发的基本知识,帮助他们熟练运用大模型解决实际问题。
-
清华大学、浙江大学、西安电子科技大学:
- 课程内容:这些高校是国内人工智能产业人才培养的重要基地,虽然具体课程细节未提及,但它们在人工智能基础技术方面积累了大量经验,并在大模型领域具备优势。
-
国家开放大学软件学院:
- 课程内容:该学院旨在为从业人员提供继续教育和学习新技术的平台,促进工业与信息化的深度融合。
- 实习与项目实践机会:通过与当地院校合作,建立人才实训基地,可以提供有针对性的人才培育,满足企业对人才的需求。
大模型行业对复合型人才的具体需求包括哪些方面?
大模型行业对复合型人才的具体需求可以从多个方面进行分析:
-
技术能力:
- 底层架构与算法:大模型科研公司需要掌握大模型底层架构、CNN、Transformer等技术的人才。
- 多模态融合:随着大模型的发展,需要自然语言处理、机器视觉等多模态领域的技术人才。
- 工程化与优化:在大模型的应用开发中,需要具备工程化融合能力和数据处理能力的人才,以实现模型的定制化和优化。
-
跨学科知识:
- 计算机科学与数学:企业需要培养员工的跨学科知识,包括计算机科学、数学、行业知识等多个领域的综合能力。
- 行业理解:行业大模型的应用开发需要既懂技术又懂业务的人才,能够将行业知识融入大模型开发中,实现模型的定制化。
-
实战与创新能力:
- 实战经验:大模型人才不仅需要学历背景和学术成果,还需要具备实战经验和创新性,能够在实际业务场景中应用大模型技术。
- 跨职能胜任力:复合型创新人才需要具备技术胜任力和跨职能胜任力,能够在不同职能之间灵活切换,推动项目的顺利实施。
-
业务理解与定制化开发:
- 业务需求理解:企业需要掌握基础技术且了解某个行业的复合型人才,能够将大模型融入到企业的整个生产流程中,成为企业产品的一部分。
- 定制化开发能力:在金融领域,大模型与业务场景的深度结合要求人才不仅要理解业务需求,还要具备定制化开发的能力,以满足不同客户的个性化需求。
-
教育体系与人才培养模式:
- 教育体系调整:传统金融人才和计算机人才的培养已经不能很好地满足金融垂直领域对大模型人才的需求,因此需要对传统人才教育体系进行调整与创新,以优化人才知识结构,更好地匹配新场景的需求。
- 跨学科教学设计:人才培养应该强调跨学科的教学设计,综合运用计算机技术、数据科学和金融领域知识的复杂方向,这种跨学科、跨领域的综合能力培养提出了新的要求和挑战。
大模型行业对复合型人才的需求涵盖了技术能力、跨学科知识、实战与创新能力、业务理解与定制化开发以及教育体系与人才培养模式等多个方面。
在AI大模型领域,普通大学人工智能本科生面临的最大挑战是什么?
在AI大模型领域,普通大学人工智能本科生面临的最大挑战主要集中在以下几个方面:
-
技术壁垒高:AI大模型的训练过程需要大量的数据和算力,且对模型的性能要求极高。这对于高校来说是一个巨大的挑战,因为高校通常缺乏足够的计算资源和高性能计算环境。
-
人才缺口大:目前,国内AI大模型人才供给不足,尤其是具有深厚学术背景和实践经验的人才较为稀缺。这意味着学生在学习过程中可能难以找到合适的导师或项目进行深入研究。
-
教育内容与实践脱节:学生在学习人工智能时遇到的主要困难包括理解AI概念和工作原理的复杂性、数学基础、算法的高复杂度、编程语言和编码的挑战,以及寻找合适的教程和学习资源。他们认为AI教育过程缺乏实践元素,理论与实践平衡不足。
-
学术诚信风险:新兴的人工智能技术引发了公众对保障学术诚信和促进学生负责任地使用AI的迫切关注。如果学生过度依赖生成式AI模型,他们有可能逃避学习过程中的高阶思维加工和知识的内化,从而降低学习的质量和效果。
-
隐私和安全问题:大型生成式模型需要大量的数据进行训练,可能涉及敏感信息的处理和存储。因此,保护学生和教育者的隐私,确保数据的安全性是一个重要的挑战和限制。
普通大学人工智能本科生面临的最大挑战是技术壁垒高、人才缺口大、教育内容与实践脱节、学术诚信风险以及隐私和安全问题。