【改进灰狼优化算法】改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)

文章提出了一种改进的灰狼优化算法(CGWO),该算法采用余弦规律变化的收敛因子以平衡全局和局部搜索,并通过步长欧氏距离的比例权重更新策略提高收敛速度。实验显示CGWO在经典测试函数中表现优秀,且在Richards模型参数估计中优于PSO、GA和VS-FOA算法。
摘要由CSDN通过智能技术生成

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码实现


💥1 概述

文献来源:

摘要:在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。对8个经典测试函数进行仿真实验,结果表明CGWO算法的求解精度更高,稳定性更好。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。

关键词:

灰狼优化算法;收敛因子;Richards模型;参数估计;

📚2 运行结果

部分代码:
function [Alpha_score,Alpha_pos,Convergence_curve]=CGWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
%% 收敛因子参数
aintit = 2;
afinal = 0;

% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop
while l<Max_iter
    for i=1:size(Positions,1)  
        
       % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update Alpha, Beta, and Delta
        if fitness<Alpha_score 
            Alpha_score=fitness; % Update alpha
            Alpha_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness<Beta_score 
            Beta_score=fitness; % Update beta
            Beta_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 
            Delta_score=fitness; % Update delta
            Delta_pos=Positions(i,:);
        end
    end
    
    %% 改进点:收敛因子改进,文献中式(7)
    n = 1;%递减系数
   if(l<0.5*Max_iter)
       a = afinal + (aintit - afinal)*(1 + (cos((l-1)*pi/( Max_iter-1)))^n)/2;
   else
       a = afinal + (aintit - afinal)*(1 - (cos((l-1)*pi/( Max_iter-1)))^n)/2;
   end
    
    % Update the Position of search agents including omegas
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     
                       
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]
            
            A1=2*a*r1-a; % Equation (3.3)
            C1=2*r2; % Equation (3.4)
            
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
                       
            r1=rand();
            r2=rand();
            
            A2=2*a*r1-a; % Equation (3.3)
            C2=2*r2; % Equation (3.4)
            
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
            
            r1=rand();
            r2=rand(); 
            
            A3=2*a*r1-a; % Equation (3.3)
            C3=2*r2; % Equation (3.4)
            
            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             
           %% 改进点:基于步长欧氏距离的比例权重
           S = abs(X1) + abs(X2)+abs(X3);
           if S~=0 %防止分母为0
               W1 = abs(X1)/(abs(X1) + abs(X2)+abs(X3));
               W2 = abs(X2)/(abs(X1) + abs(X2)+abs(X3));
               W3 = abs(X3)/(abs(X1) + abs(X2)+abs(X3));
           else
               W1=1;W2=1;W3=1;
           end
               
                     
            Positions(i,j)=(W1*X1+X2*W2+X3*W3)/3;% Equation (3.7)
            
        end
    end
    l=l+1;    
    Convergence_curve(l)=Alpha_score;
end

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]王秋萍,王梦娜,王晓峰.改进收敛因子和比例权重的灰狼优化算法[J].计算机工程与应用,2019,55(21):60-65+98.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值