基于回归分析REGRESS方法的风电功率预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景

二、研究方法

三、研究步骤

四、研究优势与局限

优势:

局限:

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于REGRESS(这里指的是回归分析,特别是线性回归或多元线性回归,因为REGRESS并非一个特指的风电功率预测模型名称)的风电功率预测研究,主要涉及到利用回归分析的方法来分析和预测风电场的风力发电量。以下是对这一研究的详细阐述:

一、研究背景

随着全球能源需求的不断增长和对传统化石能源的限制,风能作为一种可再生、环保的能源形式,受到了越来越多的关注和利用。风电功率预测作为风能利用中的一个重要环节,对于电网的安全稳定运行、风电场的维护检修以及电力市场的竞争力提升都具有重要意义。

二、研究方法

在基于REGRESS的风电功率预测研究中,主要采用回归分析的方法,特别是线性回归或多元线性回归模型。这些方法通过分析历史数据中的风速、风向、温度、湿度等气象数据以及风机数据,来拟合自变量(如风速、风向等)与因变量(风电发电量)之间的线性关系,从而实现对未来风电功率的预测。

三、研究步骤

  1. 数据收集:收集风电场的历史数据,包括风速、风向、温度、湿度等气象数据以及风机的发电量数据。
  2. 数据预处理:对收集到的数据进行清洗、整理,去除异常值和缺失值,确保数据的准确性和完整性。
  3. 模型建立:根据回归分析的原理,选择合适的自变量和因变量,建立回归模型。在风电功率预测中,通常将风速、风向等作为自变量,风电发电量作为因变量。
  4. 参数估计:通过最小二乘法等方法,估计回归模型中的参数(如回归系数)。
  5. 模型检验:对建立的回归模型进行检验,评估其拟合优度和预测精度。
  6. 预测应用:利用建立的回归模型进行风电功率的预测,为电网调度、风电场维护检修等提供指导。

四、研究优势与局限

优势:
  1. 简单易行:回归分析方法原理简单,易于理解和实现。
  2. 适用性强:可以处理多个自变量与因变量之间的线性关系,适用于风电功率预测等复杂场景。
  3. 预测精度高:在数据量充足且自变量与因变量之间关系较为明确的情况下,回归模型的预测精度较高。
局限:
  1. 线性假设:回归模型假设自变量与因变量之间存在线性关系,而实际上这种关系可能是非线性的,从而导致预测误差。
  2. 数据依赖:回归模型的预测结果高度依赖于输入数据的准确性和完整性,数据质量问题可能影响预测精度。
  3. 忽视其他因素:回归模型可能无法全面考虑所有影响风电功率的因素(如风机故障、电网状况等),从而导致预测结果的不准确。

五、未来展望

随着风电技术的不断发展和数据获取技术的提升,基于回归分析的风电功率预测方法也将不断完善。未来研究可以探索非线性回归模型、混合模型等方法来提高预测精度;同时,也可以结合机器学习、深度学习等先进技术来进一步提升风电功率预测的能力。此外,加强数据质量控制和异常检测也是提高预测精度的关键所在。

📚2 运行结果

部分代码:

% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);p_train=p_train';
p_test = mapminmax('apply', P_test, ps_input);p_test=p_test';

[t_train, ps_output] = mapminmax(T_train, 0, 1);t_train=t_train';
t_test = mapminmax('apply', T_test, ps_output);t_test=t_test';

X=ones(size(p_train,1),1);
X=[X,p_train];
alpha=0.05;%置信区间
[b,bint,r,rint,stats] = regress(t_train,X,alpha);

t_sim1=b(1)+p_train*b(2:end);
t_sim2=b(1)+p_test*b(2:end);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]赵雪纯.燃气管道球阀内漏识别与流量预测方法研究[D].重庆科技学院,2022.

[2]杨茂,马秀达,温道扬,等.风电功率预测研究综述[J].电测与仪表, 2013, 50(7):5.DOI:10.3969/j.issn.1001-1390.2013.07.002.

[3]冯江霞.风电功率预测及风电场储能容量优化研究[D].山东大学,2013.DOI:10.7666/d.Y2327290.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值