基于卷积神经网络CNN的风电功率预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 研究背景

2. CNN的优势

3. 研究方法

4. 挑战与未来方向

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于卷积神经网络(CNN)的风电功率预测是一种利用深度学习技术来提高预测准确性的重要方法。风能作为一种可再生能源,在全球能源结构转型中扮演着关键角色。然而,由于风力的不稳定性,准确预测风电功率对于电力系统的稳定运行、能源调度和市场交易至关重要。下面是对基于CNN的风电功率预测研究的简要概述:

1. 研究背景

传统的风电功率预测方法主要包括统计模型(如自回归模型ARIMA)、物理模型(如天气预报结合风电场特性)和机器学习模型(如支持向量机SVM、随机森林RF)。这些方法在处理非线性关系和高维数据时存在局限性。相比之下,CNN凭借其在图像识别和序列数据分析中的出色表现,被引入到风电功率预测领域,以期捕捉时间序列数据中的时空特征。

2. CNN的优势

  • 局部特征提取:CNN通过卷积层自动学习输入数据的局部特征,这对于识别风速、风向等气象因素对风电功率的影响尤为有效。
  • 权值共享:减少了模型参数数量,降低了过拟合风险,并加速了训练过程。
  • 池化操作:通过下采样减少数据维度,提取更加鲁棒的特征,同时保持对时间序列数据变化的敏感性。
  • 深度结构:多层网络结构能够学习到更复杂的非线性关系,提高预测精度。

3. 研究方法

基于CNN的风电功率预测通常包括以下几个步骤:

  • 数据预处理:对原始风速、风向、温度、湿度等气象数据及历史功率数据进行清洗、归一化处理。
  • 构建模型:设计CNN架构,包括卷积层、池化层、全连接层和输出层。可能还会结合循环神经网络(RNN)或长短时记忆网络(LSTM)来增强对时间序列的捕捉能力。
  • 训练与验证:使用历史数据训练模型,并通过交叉验证等技术评估模型性能,调整超参数。
  • 预测与评估:用训练好的模型对未来一段时间内的风电功率进行预测,并通过均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等指标评估预测精度。

4. 挑战与未来方向

尽管基于CNN的风电功率预测取得了显著进展,但仍面临一些挑战,如:

  • 数据质量:实际应用中数据可能存在缺失、噪声等问题,需要更先进的数据处理策略。
  • 模型复杂度:深度学习模型往往需要大量计算资源和较长的训练时间,优化模型结构和算法是未来研究的重点。
  • 不确定性处理:风能的自然特性导致预测结果存在不确定性,如何在模型中融入不确定性分析是一个研究前沿。

综上所述,基于CNN的风电功率预测是当前能源预测领域的一个活跃研究方向,通过不断的技术创新和算法优化,有望进一步提升预测精度,为风能的有效利用和电力系统的智能化管理提供强有力的支持。

📚2 运行结果

部分代码:

%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_train1 = T_train;
T_test2 = T_test;

%  数据格式转换
T_sim1 = double(T_sim1);% cell2mat将cell元胞数组转换为普通数组
T_sim2 = double(T_sim2);


CNN_TSIM1 = T_sim1';
CNN_TSIM2 = T_sim2';
save CNN CNN_TSIM1 CNN_TSIM2

% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1');
fprintf('\n')

figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1')
legend('真实值','预测值')
title('CNN训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2');
fprintf('\n')


figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2')
legend('真实值','预测值')
title('CNN-预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

figure('Position',[200,300,600,200])
plot(T_sim2'-T_test2)
title('CNN误差曲线图')
xlabel('样本点')
ylabel('发电功率')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王晓鹏,王磊,韩小伟,等.基于k-means聚类的粒子群优化CNN-BiGRU-HAM发动机剩余使用寿命预测方法[J].机床与液压, 2023(12).

[2]王守凯.基于相邻风场大数据的风电短期功率预测研究[D].华北电力大学(北京),2017.DOI:10.7666/d.Y3264383.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值