1.拉普拉斯变换
传递函数:拉普拉斯的应用
典型环节的传递函数:
方框图:
梅逊增益公式:(快速写出传递函数)
首先是介绍:结构图===信号流图
正式介绍公式:
使用例子:(以典型传递函数为例)
对于一个完整的系统,分别有三种特殊的传递函数:
开环传递函数、闭环传递函数、误差传递函数
如题:
闭环:
闭环系统劳斯判定(稳定性判定):
劳斯判定的特殊情况
(1):
(2):
闭环系统的动态性能指标:
控制系统的时间响应,可分为先动态后静态两个阶段,静态指标已在前面讨论,现在讨论动态过程,动态过程是指系统输出量从初始状态到最终状态的响应过程。这个过程的快慢可通过系统的动态性能指标来描述:就是下面的TR TP TS S 等
二阶系统动态分析:
首先建立二阶动态系统的数学模型:
然后对二阶动态系统的性能指标进行计算:
开环:
误差系统稳态误差计算:
稳态性能是指系统达到稳态之后,系统跟踪输入信号的一种能力
而稳态误差就是稳态性能好坏的指标
1.计算静态误差的一般方法:
2.计算静态误差的方法2----误差系数法
举例:
开环图解闭环系统的根轨迹:
根轨迹就是用系统开环零点Z,开环极点P的分布,来确定系统闭环极点S的图解方法
第4章、线性系统的根轨迹法_哔哩哔哩_bilibili这个讲的很清楚
我们不可能通过根轨迹方程画根轨迹,下面是正式画根轨迹的几个法则:
实战:
先画出所有开环零点和开环极点,再根据以下法则画根轨迹
×表示开环极点,⚪表示开环零点
根之和用法:先用特殊的根,比如极点相加算出常数,然后再用常数做题
练习:
定理:
举例练习:
开环频率特性:
1.开环频率特性:开环系统是由多个典型环节组成的,因此掌握典型环节的频率特性就能绘制开环频率特性曲线了。
而研究开环频率特性的意义在于:对于一个控制系统进行频域分析时,常常是用系统的开环频域特性来判断闭环系统的稳定性以及各项指标
频率特性的表示方法:
这里1图的相频图和3的相频图不用的原因是横坐标,越往后面,三图的横坐标就压的越紧,导致图形变形
典型环节的开环频率特性曲线:
典型环节的开环频率特性波特图:
开环频率特性稳定判据:(Nyquist 稳定性判据)
用开环特性判断闭环稳定性的方法
前面的劳斯是代数稳定判据,这里是利用系统的开环与闭环频率特性来判断系统稳定性的方法。对于一个系统,其开环模型中包含了闭环所有环节的动态结构和参数,因此我们可以用开环频率特性分析出闭环系统的稳定性。
比如:闭环的特征式D(S)==开环的特征式+开环传递函数的分子