学习了英伟达NeMo和NIM两个产品或者服务,这篇主要介绍下什么是英伟达NeMo。Nemo是英伟达的一个端到端的平台,用于随时随地开发自定义生成式AI,包括大语言模型(LLM)、多模态、视觉和语音AI。如果你想训练自己的大语言模型,如果你想开发RAG、Agent等应用,均可以使用NeMo框架。可以访问此网址Get Started With NVIDIA NeMo | NVIDIA来开始使用NeMo。
1. 框架:NeMo提供从数据处理、模型训练到推理部署的完整解决方案,帮助开发者高效地构建和部署生成式AI应用。以下是NeMo框架的架构图,对于想训练自己的大语言模型的企业不需要GPU就可以起步。不过忘了问下英伟达的同学GPU在中国的限制在这个平台上是否可以绕过去。
2. 生态:可以看到这是一个类似于Google、Azure、AWS、阿里云GenAI之类的生态,英伟达从一家硬件提供商向前一步开始提供应用生态,这个CUDA偏硬件的生态不一样,已经进入软件和应用的领域,底层是英伟达的GPU算力。当然,另一面Google等公司一边大量购买英伟达的GPU,一边也在开发自己的TPU,竞合的关系初露峥嵘。
3. 多模态支持:NeMo支持文本、图像、语音等多种模态的数据处理,能够构建跨模态的生成式AI模型,满足多样化的应用场景需求。
4. 高性能和加速性能:NeMo基于NVIDIA的GPU和深度学习加速器,提供高性能的模型训练和推理能力。通过优化算法和技术,如混合精度计算、分布式训练等,进一步提升了计算效率和模型性能。这当然是英伟达的优势,尤其现在的应用里一个用户问询或者任务需要多个模型联动且反复调用,如何让用户感觉不到延迟感都依赖计算和推理效率的提升。
5. 丰富的大语言模型定制工具:如下图所示,供提示词工程、提示词学习、参数效率微调到微调完整的不同类型的工具提供。
6. NeMo社区目前支持的大语言模型: