YOLO11改进 | 模块缝合 | C3k2融合多尺度表征学习模块 【两种改进】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将YOLO11的C3k2替换为融合结构来提取特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2. C3k2_MSBlock代码实现

2.1 将C3k2_MSBlock添加到YOLO11中

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

### YOLOv11 C3K2版本特性 YOLOv11中的C3K2模块显著提升了模型的特征提取能力。该模块通过改进网络结构,增强了对复杂场景的理解和目标检测精度[^2]。 #### 模块设计特点 C3K2模块采用了独特的卷积核组合方式,在保持计算效率的同时提高了特征表达力。具体来说: - **多尺度融合**:利用不同大小的感受野来捕捉图像中的细节信息。 - **残差连接机制**:有效解决了深层网络训练过程中梯度消失的问题,促进了信息传递的有效性。 ```python class C3K2(nn.Module): def __init__(self, ch_in, ch_out, kernel_size=3, stride=1, padding=None): super(C3K2, self).__init__() if not padding: padding = (kernel_size - 1) // 2 self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size, stride, padding) self.bn1 = nn.BatchNorm2d(ch_out) self.relu = nn.ReLU(inplace=True) self.residual_conv = nn.Sequential( nn.Conv2d(ch_out, ch_out, kernel_size, 1, padding), nn.BatchNorm2d(ch_out)) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) residual = self.residual_conv(out) out += residual return out ``` 这种架构使得YOLOv11能够在更广泛的视觉任务上取得优异表现,特别是在处理高分辨率输入或者密集物体分布的情况下表现出色。 #### 应用领域 由于其强大的特征提取能力和高效的推理速度,YOLOv11广泛应用于多个计算机视觉应用场景中,包括但不限于: - 实时视频监控系统 - 自动驾驶车辆环境感知 - 工业自动化缺陷检测 上述优势让YOLOv11成为众多开者首选的目标检测框架之一[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值