基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

 一、项目介绍

YOLOv10奶牛行为检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测奶牛的行为状态。该系统能够自动识别并分类奶牛的三种主要行为:站立行走 和 卧倒。通过该系统,用户可以实时监控奶牛的行为状态,帮助养殖场管理者优化奶牛的健康管理、提高生产效率,并为动物福利提供数据支持。

该系统在智能养殖、动物行为研究、畜牧业管理等领域具有广泛的应用前景,能够为用户提供高效、准确的奶牛行为检测解决方案。

目录

 一、项目介绍

二、项目功能展示

        系统功能

图片检测

视频检测

摄像头实时检测

三、数据集介绍​编辑

技术优势

数据集配置文件data.yaml

数据集制作流程

四、项目环境配置

创建虚拟环境

pycharm中配置anaconda

安装所需要库

五、模型训练

训练代码

训练结果

六、核心代码

七、项目源码(视频下方简介内)


基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

二、项目功能展示

系统功能

✅ 图片检测:可对图片进行检测,返回检测框及类别信息。

✅ 视频检测:支持视频文件输入,检测视频中每一帧的情况。

✅ 摄像头实时检测:连接USB 摄像头,实现实时监测。

参数实时调节(置信度和IoU阈值)

  • 图片检测

        该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。批量图片检测

        用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理,并返回每张图像的目标检测结果,适用于需要大规模处理图像数据的应用场景。

  • 视频检测

        视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频,并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示,适用于视频监控和分析等场景。

  • 摄像头实时检测

        该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测,实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用,提供即时反馈。

核心特点:

  • 高精度:基于YOLO模型,提供精确的目标检测能力,适用于不同类型的图像和视频。
  • 实时性:特别优化的算法使得实时目标检测成为可能,无论是在视频还是摄像头实时检测中,响应速度都非常快。
  • 批量处理:支持高效的批量图像和视频处理,适合大规模数据分析。

三、数据集介绍

数据集名称: 奶牛行为检测数据集
数据集类别: 3类
类别名称: ['站立', '行走', '卧倒']

数据集划分:

  • 训练集: 3946 张图像
    训练集用于训练YOLOv10模型,使其能够学习并识别奶牛三种行为状态的特征。训练集的图像涵盖了不同光照条件、背景环境、奶牛的不同姿态以及行为变化,以确保模型的泛化能力。

  • 验证集: 493 张图像
    验证集用于在训练过程中评估模型的性能,帮助调整超参数和防止过拟合。验证集的图像与训练集类似,但独立于训练集,确保模型在未见过的数据上也能表现良好。

  • 测试集: 493 张图像
    测试集用于最终评估模型的性能,反映模型在实际应用中的表现。测试集的图像是完全独立的,确保评估结果的客观性和准确性。

数据集特点:

  • 高质量标注: 每张图像都经过精确的标注,标注信息包括奶牛的行为类别和边界框位置,确保模型能够准确学习目标特征。

  • 多样性: 数据集中的图像涵盖了不同光照条件(如白天、夜晚)、背景环境(如室内、室外)、奶牛的不同姿态以及行为变化,确保模型能够适应各种实际场景。

  • 类别平衡: 数据集中三种行为类别的样本数量相对平衡,避免了类别不平衡问题对模型性能的影响。

应用场景:

  1. 智能养殖:
    实时监控奶牛的行为状态,帮助养殖场管理者优化奶牛的健康管理,如疾病预防、发情检测和产奶量预测。

  2. 动物行为研究:
    为动物行为研究人员提供数据支持,帮助研究奶牛的行为模式及其与健康、生产性能的关系。

  3. 畜牧业管理:
    通过检测奶牛的行为状态,优化饲养管理流程,如饲料投放、运动管理和环境改善,提高生产效率。


技术优势

  • 高精度检测: 基于YOLOv10目标检测算法,能够实现高精度的奶牛行为检测。

  • 实时性: 系统支持实时检测,能够快速处理图像并输出检测结果。

  • 鲁棒性: 模型经过多样化数据训练,能够适应不同光照条件、背景环境和奶牛姿态。

  • 易用性: 系统可部署于多种硬件平台(如嵌入式设备、监控摄像头、服务器等),满足不同场景的需求。

数据集配置文件data.yaml

train: .\datasets\images\train
val: .\datasets\images\val
test: .\datasets\images\test

nc: 3
names: ['0', '1', '2']

数据集制作流程

  • 标注数据:使用标注工具(如LabelImg、CVAT等)对图像中的目标进行标注。每个目标需要标出边界框,并且标注类别。

  • 转换格式:将标注的数据转换为YOLO格式。YOLO标注格式为每行:<object-class> <x_center> <y_center> <width> <height>,这些坐标是相对于图像尺寸的比例。

  • 分割数据集:将数据集分为训练集、验证集和测试集,通常的比例是80%训练集、10%验证集和10%测试集。

  • 准备标签文件:为每张图片生成一个对应的标签文件,确保标签文件与图片的命名一致。

  • 调整图像尺寸:根据YOLO网络要求,统一调整所有图像的尺寸(如416x416或608x608)。

四、项目环境配置

创建虚拟环境

首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。

终端输入

conda create -n yolov10 python==3.9

激活虚拟环境

conda activate yolov10
 

安装cpu版本pytorch

pip install torch torchvision torchaudio

pycharm中配置anaconda

安装所需要库

pip install -r requirements.txt

五、模型训练

训练代码

from ultralytics import YOLOv10

model_path = 'yolov10s.pt'
data_path = 'datasets/data.yaml'

if __name__ == '__main__':
    model = YOLOv10(model_path)
    results = model.train(data=data_path,
                          epochs=500,
                          batch=64,
                          device='0',
                          workers=0,
                          project='runs/detect',
                          name='exp',
                          )
根据实际情况更换模型
yolov10n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。
yolov10s.yaml (small):小模型,适合实时任务。
yolov10m.yaml (medium):中等大小模型,兼顾速度和精度。
yolov10b.yaml (base):基本版模型,适合大部分应用场景。
yolov10l.yaml (large):大型模型,适合对精度要求高的任务。
  • --batch 64:每批次64张图像。
  • --epochs 500:训练500轮。
  • --datasets/data.yaml:数据集配置文件。
  • --weights yolov10s.pt:初始化模型权重,yolov10s.pt 是预训练的轻量级YOLO模型。

训练结果

六、核心代码

import sys
 
import cv2
import numpy as np
from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog
from PyQt5.QtCore import QThread, pyqtSignal
from ultralytics import YOLOv10
from UiMain import UiMainWindow
import time
import os
 
 
class DetectionThread(QThread):
    frame_received = pyqtSignal(np.ndarray, np.ndarray, list)  # 原始帧, 检测帧, 检测结果
    finished_signal = pyqtSignal()  # 线程完成信号
 
    def __init__(self, model, source, conf, iou, parent=None):
        super().__init__(parent)
        self.model = model
        self.source = source
        self.conf = conf
        self.iou = iou
        self.running = True
 
    def run(self):
        try:
            if isinstance(self.source, int) or self.source.endswith(('.mp4', '.avi', '.mov')):  # 视频或摄像头
                cap = cv2.VideoCapture(self.source)
                while self.running and cap.isOpened():
                    ret, frame = cap.read()
                    if not ret:
                        break
 
                    # 保存原始帧
                    original_frame = frame.copy()
 
                    # 检测
                    results = self.model(frame, conf=self.conf, iou=self.iou)
                    annotated_frame = results[0].plot()
 
                    # 提取检测结果
                    detections = []
                    for result in results:
                        for box in result.boxes:
                            class_id = int(box.cls)
                            class_name = self.model.names[class_id]
                            confidence = float(box.conf)
                            x, y, w, h = box.xywh[0].tolist()
                            detections.append((class_name, confidence, x, y))
 
                    # 发送信号
                    self.frame_received.emit(
                        cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB),
                        cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB),
                        detections
                    )
 
                    # 控制帧率
                    time.sleep(0.03)  # 约30fps
 
                cap.release()
            else:  # 图片
                frame = cv2.imread(self.source)
                if frame is not None:
                    original_frame = frame.copy()
                    results = self.model(frame, conf=self.conf, iou=self.iou)
                    annotated_frame = results[0].plot()
 
                    # 提取检测结果
                    detections = []
                    for result in results:
                        for box in result.boxes:
                            class_id = int(box.cls)
                            class_name = self.model.names[class_id]
                            confidence = float(box.conf)
                            x, y, w, h = box.xywh[0].tolist()
                            detections.append((class_name, confidence, x, y))
 
                    self.frame_received.emit(
                        cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB),
                        cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB),
                        detections
                    )
 
        except Exception as e:
            print(f"Detection error: {e}")
        finally:
            self.finished_signal.emit()
 
    def stop(self):
        self.running = False
 
 
class MainWindow(UiMainWindow):
    def __init__(self):
        super().__init__()
 
        # 初始化模型
        self.model = None
        self.detection_thread = None
        self.current_image = None
        self.current_result = None
        self.video_writer = None
        self.is_camera_running = False
        self.is_video_running = False
        self.last_detection_result = None  # 新增:保存最后一次检测结果
 
        # 连接按钮信号
        self.image_btn.clicked.connect(self.detect_image)
        self.video_btn.clicked.connect(self.detect_video)
        self.camera_btn.clicked.connect(self.detect_camera)
        self.stop_btn.clicked.connect(self.stop_detection)
        self.save_btn.clicked.connect(self.save_result)
 
        # 初始化模型
        self.load_model()
 
    def load_model(self):
        try:
            model_name = self.model_combo.currentText()
            self.model = YOLOv10(f"{model_name}.pt")  # 自动下载或加载本地模型
            self.update_status(f"模型 {model_name} 加载成功")
        except Exception as e:
            QMessageBox.critical(self, "错误", f"模型加载失败: {str(e)}")
            self.update_status("模型加载失败")
 
    def detect_image(self):
        if self.detection_thread and self.detection_thread.isRunning():
            QMessageBox.warning(self, "警告", "请先停止当前检测任务")
            return
 
        file_path, _ = QFileDialog.getOpenFileName(
            self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)")
 
        if file_path:
            self.clear_results()
            self.current_image = cv2.imread(file_path)
            self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB)
            self.display_image(self.original_image_label, self.current_image)
 
            # 创建检测线程
            conf = self.confidence_spinbox.value()
            iou = self.iou_spinbox.value()
            self.detection_thread = DetectionThread(self.model, file_path, conf, iou)
            self.detection_thread.frame_received.connect(self.on_frame_received)
            self.detection_thread.finished_signal.connect(self.on_detection_finished)
            self.detection_thread.start()
 
            self.update_status(f"正在检测图片: {os.path.basename(file_path)}")
 
    def detect_video(self):
        if self.detection_thread and self.detection_thread.isRunning():
            QMessageBox.warning(self, "警告", "请先停止当前检测任务")
            return
 
        file_path, _ = QFileDialog.getOpenFileName(
            self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)")
 
        if file_path:
            self.clear_results()
            self.is_video_running = True
 
            # 初始化视频写入器
            cap = cv2.VideoCapture(file_path)
            frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = cap.get(cv2.CAP_PROP_FPS)
            cap.release()
 
            # 创建保存路径
            save_dir = "results"
            os.makedirs(save_dir, exist_ok=True)
            timestamp = time.strftime("%Y%m%d_%H%M%S")
            save_path = os.path.join(save_dir, f"result_{timestamp}.mp4")
 
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
            self.video_writer = cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height))
 
            # 创建检测线程
            conf = self.confidence_spinbox.value()
            iou = self.iou_spinbox.value()
            self.detection_thread = DetectionThread(self.model, file_path, conf, iou)
            self.detection_thread.frame_received.connect(self.on_frame_received)
            self.detection_thread.finished_signal.connect(self.on_detection_finished)
            self.detection_thread.start()
 
            self.update_status(f"正在检测视频: {os.path.basename(file_path)}")
 
    def detect_camera(self):
        if self.detection_thread and self.detection_thread.isRunning():
            QMessageBox.warning(self, "警告", "请先停止当前检测任务")
            return
 
        self.clear_results()
        self.is_camera_running = True
 
        # 创建检测线程 (默认使用摄像头0)
        conf = self.confidence_spinbox.value()
        iou = self.iou_spinbox.value()
        self.detection_thread = DetectionThread(self.model, 0, conf, iou)
        self.detection_thread.frame_received.connect(self.on_frame_received)
        self.detection_thread.finished_signal.connect(self.on_detection_finished)
        self.detection_thread.start()
 
        self.update_status("正在从摄像头检测...")
 
    def stop_detection(self):
        if self.detection_thread and self.detection_thread.isRunning():
            self.detection_thread.stop()
            self.detection_thread.quit()
            self.detection_thread.wait()
 
        if self.video_writer:
            self.video_writer.release()
            self.video_writer = None
 
        self.is_camera_running = False
        self.is_video_running = False
        self.update_status("检测已停止")
 
    def on_frame_received(self, original_frame, result_frame, detections):
        # 更新原始图像和结果图像
        self.display_image(self.original_image_label, original_frame)
        self.display_image(self.result_image_label, result_frame)
 
        # 保存当前结果帧用于后续保存
        self.last_detection_result = result_frame  # 新增:保存检测结果
 
        # 更新表格
        self.clear_results()
        for class_name, confidence, x, y in detections:
            self.add_detection_result(class_name, confidence, x, y)
 
        # 保存视频帧
        if self.video_writer:
            self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR))
 
    def on_detection_finished(self):
        if self.video_writer:
            self.video_writer.release()
            self.video_writer = None
            self.update_status("视频检测完成,结果已保存")
        elif self.is_camera_running:
            self.update_status("摄像头检测已停止")
        else:
            self.update_status("图片检测完成")
 
    def save_result(self):
        if not hasattr(self, 'last_detection_result') or self.last_detection_result is None:
            QMessageBox.warning(self, "警告", "没有可保存的检测结果")
            return
 
        save_dir = "results"
        os.makedirs(save_dir, exist_ok=True)
        timestamp = time.strftime("%Y%m%d_%H%M%S")
 
        if self.is_camera_running or self.is_video_running:
            # 保存当前帧为图片
            save_path = os.path.join(save_dir, f"snapshot_{timestamp}.jpg")
            cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR))
            self.update_status(f"截图已保存: {save_path}")
        else:
            # 保存图片检测结果
            save_path = os.path.join(save_dir, f"result_{timestamp}.jpg")
            cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR))
            self.update_status(f"检测结果已保存: {save_path}")
 
    def closeEvent(self, event):
        self.stop_detection()
        event.accept()
 
 
if __name__ == "__main__":
    app = QApplication(sys.argv)
 
    # 设置应用程序样式
    app.setStyle("Fusion")
 
    # 创建并显示主窗口
    window = MainWindow()
    window.show()
 
    sys.exit(app.exec_())

七、项目源码(视频下方简介内)

        完整全部资源文件(包括测试图片、视频,py文件,训练数据集、训练代码、界面代码等),这里已打包上传至博主的面包多平台,见可参考博客与视频,已将所有涉及的文件同时打包到里面,点击即可运行,完整文件截图如下:

基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能_SYBH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值