YOLOv8算法改进【NO.93】使用resnet18网络作为主干特征提取网络

 前   言
       YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通:

第一,创新主干特征提取网络,将整个Backbone改进为其他的网络,比如这篇文章中的整个方法,直接将Backbone替换掉,理由是这种改进如果有效果,那么改进点就很值得写,不算是堆积木那种,也可以说是一种新的算法,所以做实验的话建议朋友们优先尝试这种改法。

第二,创新特征融合网络,这个同理第一,比如将原yolo算法PANet结构改进为Bifpn等。

第三,改进主干特征提取网络,就是类似加个注意力机制等。根据个人实验情况来说,这种改进有时候很难有较大的检测效果的提升,乱加反而降低了特征提取能力导致mAP下降,需要有技巧的添加。

第四,改进特征融合网络,理由、方法等同上。

第五,改进检测头,更换检测头这种也算个大的改进点。

第六,改进损失函数,nms、框等,要是有提升检测效果的话,算是一个小的改进点,也可以凑字数。

第七,对图像输入做改进,改进数据增强方法等。

第八,剪枝以及蒸馏等,这种用于特定的任务,比如轻量化检测等,但是这种会带来精度的下降。

...........未完待续

一、创新改进思路或解决的问题

将Backbone网络改为传统的resnet18等timm支持的网络,作为创新改进思路。

二、基本原理

原文链接: 

代码链接:https://github.com/StevenLauHKHK/Large-Separable-Kernel-Attention/blob/main/mmsegmentation/van.py

摘要:具有大内核注意力(LKA)模块的视觉注意力网络(VAN)已被证明在一系列基于视觉的任务中提供了超过视觉转换器(ViTs)的可注释性能。然而,随着卷积核大小的增加,这些LKA模块中的深度卷积层导致计算和内存占用的二次增加。为了缓解这些问题,并使超大卷积核能够在VAN的注意力模块中使用,我们提出了一系列大的可分离核注意力模块,称为LSKA。LSKA将深度卷积层的2D卷积核分解为级联的水平和垂直一维核。与标准LKA设计相比,所提出的分解能够在注意力模块中直接使用具有大内核的深度卷积层,而不需要任何额外的块。我们证明了所提出的VAN中的LSKA模块可以实现与标准LKA模块相当的性能,并降低计算复杂度和内存占用。我们还发现,随着内核大小的增加,所提出的LSKA设计使VAN更倾向于对象的形状,而不是纹理。此外,我们在ImageNet数据集的五个损坏版本上对VAN、ViTs和最近的ConvNeXt中的LKA和LSKA的稳健性进行了基准测试,这些版本在以前的工作中基本上未被探索。我们广泛的实验结果表明,随着内核大小的增加,VAN中提出的LSKA模块显著降低了计算复杂度和内存占用,同时在对象识别、对象检测、语义分割和鲁棒性测试方面优于ViTs、ConvNeXt,并提供了与VAN中LKA模块类似的性能。

三、​添加方法

部分代码如下所示,详细改进代码可私信我获取。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, resnet18, [False]]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!
### 比较ResNet和ViT深度学习模型 #### 架构差异 ResNet通过引入残差连接解决了深层网络中的梯度消失问题,使得可以训练非常深的神经网络。这种架构允许信息绕过某些层直接传递给后续层[^1]。 相比之下,Vision Transformer (ViT) 基于自注意力机制构建,该机制能够捕捉图像全局依赖关系而不受限于局部感受野大小。ViT将输入图片分割成固定尺寸的小块序列,并将其映射到高维向量空间,在此之后应用标准Transformer编码器来处理这些特征向量[^2]。 #### 训练方式 对于ResNet而言,通常采用卷积操作提取局部特征并逐步聚合形成高层语义表示;而ViT则更侧重于利用大规模预训练数据集(如ImageNet),并通过迁移学习方法应用于特定视觉任务上。此外,由于ViT结构特点决定了其计算复杂度较高,因此往往需要更多资源来进行有效训练[^3]。 #### 应用场景适应性 ResNet因其强大的泛化能力和相对较低的硬件需求,在许多实际应用场景中表现出色,特别是在实时性和效率至关重要的场合下。然而随着多模态大模型的发展趋势以及对高质量视觉理解的需求增加,基于Transformer架构设计而成的ViT逐渐展现出独特优势——尤其是在涉及长距离依赖建模的任务里,比如视频识别等时空域内的挑战性课题。 ```python import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x): residual = x out = self.conv1(x) out += residual return self.relu(out) class VisionTransformer(nn.Module): def __init__(self, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels=3): super(VisionTransformer, self).__init__() # Implementation details omitted for brevity def forward(self, img): patches = self.patch_embedding(img) tokens = self.transformer(patches) cls_token = tokens[:, 0] logits = self.mlp_head(cls_token) return logits ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值