此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的 SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行 创新点代码复现,有需要的朋友可关注私信我获取。 这篇文章图表很丰富也很有特点,也想投稿SCI顶刊的朋友需要辅导的可以联系我。![]()
一、摘要
在现代奶牛养殖中,及时准确地识别发情奶牛至关重要。应对挑战奶牛发情的延迟和低效手动监测,基于You Only Look Once v8的改进模型纳米(YOLOv8n),命名为Estrus-YOLO(E-YOLO),被提出用于有效识别发情奶牛。在这个研究显示,该数据集不仅被标记为奶牛的安装行为,而且还创新地标记了个体发情奶牛,能够精确识别发情奶牛。由于奶牛的体型较小,因此
完全交集并集 (CIoU) 损失被归一化 Wasserstein 距离 (NWD) 取代损失以降低对目标奶牛位置偏差的敏感性。上下文信息增强模块(CIAM)旨在利用奶牛的坐骑行为来增强发情奶牛的情境信息作为参考特征。此外,三重注意力模块(TAM)被整合到主干网中,以达到增强。
二、网络模型及核心创新点
创新点方面也是三个模块叠加。
三、实验效果(部分展示)
四、实验结论
一种基于视频的现代发情奶牛监测新方法提出了畜牧业:发情信息的获取不再局限于安装行为,而是直接识别发情期的单头奶牛,提高了奶牛场的效率。
注:论文原文出自 E-YOLO: Recognition of estrus cow based on improved YOLOv8n model. 本文仅用于学术分享,如有侵权,请联系后台作删文处理。
解读的系列文章,本人已进行创新点代码复现,有需要的朋友欢迎关注私信我获取❤ 。