Mamba统领医学图像分割!性能碾压CNN、Transformer!

在医学图像分割领域,Mamba已经形成了与CNN、Transformer三足鼎立之势。与其他两者相比,Mamba具有更强的长距离信息交互能力与线性时间复杂度,能够更高效地处理长序列数据,减少内存需求,实现更快的推理速度。

最新的顶会论文也关注到了Mamba在医学领域的广泛应用和前景。例如,有论文提出了基于Mamba的U-Net变体,如SegMamba、VM-UNet等,这些模型在医学图像分割任务中取得了比CNN和Transformer更好的结果。

我整理了10篇最新Mamba用于医学领域的研究论文,需要的同学添加工中号【真AI至上】 回复 曼巴医学 即可全部领取

SegMamba: Long-range Sequential Modeling

文章解析:

本文介绍了一种名为SegMamba的新3D医学图像分割模型,该模型结合了U形结构和Mamba,能够有效地捕捉全体积特征中的长程依赖关系。

与传统的CNN和Transformer方法相比,SegMamba在处理高分辨率3D医学图像时表现出更高的效率和速度。此外,作者还贡献了一个新的大规模3D结直肠癌分割数据集CRC-500。

图片

创新点:

1.首次将Mamba模型应用于3D医学图像分割,有效捕捉全体积特征中的长程依赖关系。

2.设计了三向Mamba(ToM࿰

### 使用 Mamba 实现医学图像分割的具体步骤 #### 1. 数据准备 在开始医学图像分割之前,需要准备好高质量的训练数据集。这些数据通常包括标注好的医学图像及其对应的掩码(mask)。具体来说,可以参考以下内容: - **数据预处理**:对原始医学图像进行标准化、裁剪、缩放等操作,使其适合输入到神经网络中[^2]。 - **数据增强**:为了增加模型的鲁棒性,可以通过旋转、翻转、随机裁剪等方式扩充数据集。 #### 2. 模型选择与架构设计 Mamba 是一种灵活的框架,适用于多种医学图像分割任务。以下是几种常见的 Mamba 变体及其特点: - **LoG-VMamba**:结合局部和全局视觉特征,特别适合复杂背景下的医学图像分割[^1]。 - **SliceMamba**:通过双向切削扫描模块(BSS)改进了局部特征建模能力,在皮肤病变和息肉分割上表现优异[^3]。 - **KAN-Mamba FusionNet**:融合 KAN 的非线性建模能力和 Mamba 的注意力机制,进一步提升分割精度[^4]。 - **VM-UNet**:基于 Vision Mamba 和 U-Net 结构的设计,提供了一个高效且易于实现的解决方案[^5]。 根据具体的任务需求,可以选择合适的变体作为基础模型。 #### 3. 模型训练 模型训练是整个流程的核心部分,主要包括以下几个方面: - **损失函数定义**:常用的损失函数包括 Dice Loss、交叉熵损失以及组合损失。例如,VM-UNet 提出了专门针对医学图像分割优化的 loss function- **超参数调整**:学习率、批量大小、迭代次数等因素都会影响最终效果。建议从小规模实验入手逐步调优。 - **监控指标设置**:除了传统的 accuracy 外,还应关注 IoU(Intersection over Union)、Dice Coefficient 等更贴合分割任务的评价标准。 #### 4. 测试与评估 完成训练后需对模型进行全面测试以验证其泛化能力: - 利用独立于训练集之外的验证集来衡量性能- 对预测结果可视化以便直观理解错误模式并据此改进算法逻辑。 #### 5. 部署应用 当达到满意的分割质量之后即可考虑实际部署场景的应用开发阶段: - 将训练好的权重文件导出并与前端界面集成形成完整的医疗辅助诊断工具; - 考虑实时性要求较高的场合可能还需要做额外的速度优化措施比如量化或者蒸馏技术降低计算负担。 ```python import torch from torchvision import transforms from log_vmamba import LoG_VMamba # 假设这是导入的一个具体实现类 def preprocess_image(image_path): transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) image = Image.open(image_path).convert('RGB') return transform(image) model = LoG_VMamba() checkpoint = torch.load("path_to_checkpoint.pth") # 加载已保存的最佳模型状态字典 model.load_state_dict(checkpoint['state_dict']) model.eval() test_img = preprocess_image("example_medical_image.png") output = model(test_img.unsqueeze(0)) predicted_mask = output.argmax(dim=1).squeeze().detach().numpy() # 获取二值化的分割掩膜 ``` 上述代码片段展示了如何加载预先训练过的 `LoG-VMamba` 模型并对单张图片执行推理过程得到相应的分割结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值