如何用卡诺图化简带有约束条件的逻辑函数?

本文详细介绍了卡诺图的绘制步骤,包括处理约束条件、无关项的标记、画圈原则的应用,以及通过实例演示如何从复杂的逻辑表达式中构造卡诺图并得出结果。适合理解和实践逻辑门电路设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 先看第一个例题, ∑d 就是一个约束条件。

对应输出函数值没有确定值的最小项称为无关项、任意项或约束项,记为 d 或×

根据 ∑m 和 ∑d 的数据,画出卡诺图,其中 ∑d 的数据应当画 x ,表示这个空可以为0,也可以为1。

 画出卡诺图后,对待框内的 x 要遵循:“需要时才用,不需要时不用” 的原则。

并且要遵循如下的画圈原则

尽量画大圈,但每个圈内只能含有2n(n=0,1,2,3……)个相邻项。要特别注意对边相邻性和四角相邻性。
圈的个数尽量少
③卡诺图中所有取值为“1”的方格均要被圈过,即不能漏下取值为“1”的最小项。
④保证每个圈中至少有一个“1”只被圈过一次,否则该圈是多余的。

于是我们就画出了上图中的三个圈并且可以直接得出最终结果。

下面来看看第二个例题吧!

我们先对P5这个式子进行简单的化简,得到P5= A非BC非 + A非BD非 + AB非CD非 + A非C非D。

对照上述式子,画出卡诺图(即下图中为1的空格)。

 第二个例题稍有变化,约束条件 AB + CD = 0 比较隐晦,需要稍微求解一下。

AB + CD = 0 表示 A 和 B 不能同时为1,并且 C 和 D 也不能同时为1。

换一种说法就是: A 和 B 中至少有一个为0, C 和 D 中至少有一个为0。

九种可能的情况 (AB有三种情况 00 01 10。CD有三种情况 00 01 10。3乘以3=9种)

写出ABCD的所有组合:0000 0001 0010 0100 0101 0110 1000 1001 1010。

你会发现这些组合和原来已经画1的空格有重合,没关系,此时保留原来的1即可。

下面我们把除了上述9种组合和原本已经标为1的地方之外的空格画 X ,画圈。

就得到了我们要的限制条件下的卡诺图。

 根据卡诺图就可以直接写出结果啦!

以上。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

访问宇宙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值